Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{2}{3xy}+\frac{3}{\sqrt{3\left(1+y\right)}}\ge\frac{2}{3y\left(3-y\right)}+\frac{6}{y+4}\)
\(\Rightarrow P\ge2\left(\frac{-9y^2+28y+4}{3\left(-y^3-y^2+12y\right)}\right)=2\left(\frac{2\left(-y^3-y^2+12y\right)+2y^3-7y^2+4y+4}{3\left(-y^3-y^2+12y\right)}\right)\)
\(P\ge2\left(\frac{2}{3}+\frac{\left(y-2\right)^2\left(2y+1\right)}{3y\left(3-y\right)\left(y+4\right)}\right)\ge\frac{4}{3}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
@Nguyễn Việt Lâm duyệt bài giúp em với ạ @Phạm Minh Quang nick đây
Ta có: x 2 - 5 x + 9 = x 2 - 2 x . 5 2 + 25 4 + 11 4 = x - 5 2 2 + 11 4 ≥ 11 4 ∀ x
Do đó: f x ≤ 2 11 4 = 8 11
Giá trị lớn nhất của hàm số f x = 2 x 2 - 5 x + 9 trên tập số thực là 8 11 x = 5 2
Với mọi x, y ta có:
x - y 2 ≥ 0 ⇔ x 2 - 2 x y + y 2 ≥ 0 ⇔ x 2 + y 2 ≥ 2 x y ⇔ x 2 + y 2 + 2 x y ≥ 4 x y ⇔ x + y 2 ≥ 4 x y
⇔ x + y 4 4 ≥ x y ⇔ x y ≤ x + y 2 4 = S 2 4
Giá trị lớn nhất của xy là S 2 4 . Dấu "=" xảy ra khi x = y.
Chọn D.
+ ĐKXĐ : \(\left\{{}\begin{matrix}x\ge-3\\y\ge-4\end{matrix}\right.\)
\(gt\Rightarrow x+y=6\left(\sqrt{x+3}+\sqrt{4+y}\right)\le6\sqrt{2\left(x+y+7\right)}\)
\(\Rightarrow\left(x+y\right)^2\le72\left(x+y+7\right)\)
\(\Rightarrow\left(x+y\right)^2-72\left(x+y\right)-504\le0\)
\(\Rightarrow\left(x+y-36\right)^2\le1800\Rightarrow P\le36+30\sqrt{2}\)
max \(P=36+30\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+3=y+4\\x+y=36+30\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{37}{2}+15\sqrt{2}\\y=\frac{35}{2}+15\sqrt{2}\end{matrix}\right.\)
+ \(x+y=6\left(\sqrt{x+3}+\sqrt{y+4}\right)\)
\(\Rightarrow\left(x+y\right)^2=36\left(x+y+7+2\sqrt{\left(x+3\right)\left(y+4\right)}\right)\)
\(\Rightarrow\left(x+y\right)^2-36\left(x+y\right)-252=72\sqrt{\left(x+3\right)\left(y+4\right)}\ge0\)
\(\Rightarrow\left(x+y-42\right)\left(x+y+6\right)\ge0\Rightarrow x+y\ge42\)
Min \(P=42\Leftrightarrow\left\{{}\begin{matrix}\sqrt{\left(x+3\right)\left(y+4\right)}=0\\x+y=42\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-3\\y=45\end{matrix}\right.\\\left\{{}\begin{matrix}x=46\\y=-4\end{matrix}\right.\end{matrix}\right.\)
Với x > 1 thì x -1 >0 .
Áp dụng bất đẳng thức Cô- si ta có:
f x = x 2 + 2 x - 1 = x - 1 2 + 2 x - 1 + 1 2 ≥ 2 . x - 1 2 . 2 x - 1 + 1 2 ⇔ f x ≥ 2 + 1 2 = 5 2
Giá trị nhỏ nhất của hàm số f x = x 2 + 2 x - 1 v ớ i x > 1 là 5 2
Dấu “=’ xảy ra khi x - 1 2 = 2 x - 1 ⇔ x - 1 2 = 4 ⇔ x = 3 > 1
BĐT Bu nhi a cốp xki :
\(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)
\(\Rightarrow\left(x.1+y.1\right)^2\le\left(1^2+1^2\right)\left(x^2+y^2\right)\)
\(\Rightarrow\left(x+y\right)^2\le2\left(x^2+y^2\right)\)
\(\Rightarrow x+y\le\sqrt{2\left(x^2+y^2\right)}\)Nguyễn Thị Thanh Trang
\(P=2018xy+2019\left(x+y\right)\le2018.\frac{x^2+y^2}{2}+2019\sqrt{2\left(x^2+y^2\right)}=2018.\frac{1}{2}+2019\sqrt{2.1}=1009+2019\sqrt{2}\)
Vậy GTLN của P là \(1009+2019\sqrt{2}\) . Dấu \("="\) xảy ra khi \(x=y=\frac{1}{\sqrt{2}}\)