Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hơi dài mà lười nên mình nói cách làm nha :P
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow xy+yz+xz=0\)
bạn cm \(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}=0\)
tách: \(x^2+2yz=x^2+yz-xy-xz=\left(x-z\right).\left(x-y\right)\), mấy cái khác tương tự
quy đồng rồi tính ra = 0 là được
Sử dụng bất đẳng thức:
\(x^3+y^3\ge3xy\left(x+y\right)\)
Có: \(M=2018\left(\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\right)\)
\(M\le2018\left(\frac{xyz}{xy\left(x+y\right)+xyz}+\frac{xyz}{yz\left(y+z\right)+xyz}+\frac{xyz}{xz\left(x+z\right)+xyz}\right)\)
\(M\le2018\left(\frac{xyz}{xy\left(x+y+z\right)}+\frac{xyz}{yz\left(x+y+z\right)}+\frac{xyz}{xz\left(x+y+z\right)}\right)\)
\(M\le2018\left(\frac{x+y+z}{x+y+z}\right)=2018\)
Vậy Max M=2018 khi x=y=z=1
\(\Leftrightarrow\left(x^2+\frac{1}{x^2}-2\right)+\left(y^2+\frac{1}{y^2}-2\right)+\left(z^2+\frac{1}{z^2}-2\right)=0\)
\(\Leftrightarrow\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2+\left(z-\frac{1}{z}\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-\frac{1}{x}=0\\y-\frac{1}{y}=0\\z-\frac{1}{z}=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2=1\\y^2=1\\z^2=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\pm1\\y=\pm1\\z=\pm1\end{matrix}\right.\)
Vậy P có thể nhận các giá trị \(P=\left\{-1;1;3\right\}\)
Lời giải:
Vì $xyz=1$ nên:
\(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{xyz}{x}+\frac{xyz}{y}+\frac{xyz}{z}=xy+yz+xz\)
\(\Leftrightarrow x+y+z-xy-yz-xz=0\)
\(\Leftrightarrow 1+x+y+z-xy-yz-xz-1=0\)
\(\Leftrightarrow xyz+x+y+z-xy-yz-xz-1=0\)
\(\Leftrightarrow xy(z-1)+(x+y-yz-xz)+(z-1)=0\)
\(\Leftrightarrow xy(z-1)-x(z-1)-y(z-1)+(z-1)=0\)
\(\Leftrightarrow (z-1)(xy-x-y+1)=0\)
\(\Leftrightarrow (z-1)(x-1)(y-1)=0\)
Do đó:
\(P=(x^{1999}-1)(y^{2018}-1)(z^{2019}-1)\)
\(=(x-1)(x^{1998}+x^{1997}+...+1)(y-1)(y^{2017}+...+1)(z-1)(z^{2018}+....+1)\)
\(=(x-1)(y-1)(z-1).A=0.A=0\)
Bài 2 :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2018}\)
Mà \(2018=a+b+c\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{c-a-b-c}{c\left(a+b+c\right)}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{-\left(a+b\right)}{c\left(a+b+c\right)}\)
\(\Leftrightarrow c\left(a+b\right)\left(a+b+c\right)=-ab\left(a+b\right)\)
\(\Leftrightarrow c\left(a+b\right)\left(a+b+c\right)+ab\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[b\left(a+c\right)+c\left(a+c\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(a+b\right)\left(b+c\right)=0\)
TH1 : \(a+b=0\Leftrightarrow a=-b\)
\(M=\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2014}}=\frac{1}{-b^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2014}}=\frac{1}{c^{2014}}\)
Mà \(a+b+c=2018\)
\(\Leftrightarrow-b+b+c=2018\)
\(\Leftrightarrow c=2018\)
Khi đó \(M=\frac{1}{2018^{2017}}\)
Các trường hợp còn lại tương tự
Kết quả cuối cùng : \(M=\frac{1}{2018^{2017}}\)
Câu hỏi của nguyễn thị phượng - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo bài 2 ở link này nhé!
đề bài có sai k bạn ,
giả sử x và y đối nhau , thì từ (1) => z=2018 ; từ (2) => z=1/2018 ....?
đề đúng nhưng ko giải đc