Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt 1/x = a ; 1/y = b ; 1/z = c
Ta có : \(a+b+c=2;2ab-c^2=4\)
\(a^2+b^2+c^2+2ab+2bc+2ac=2ab-c^2\)
\(\Leftrightarrow a^2+b^2+c^2+2bc+2ac+c^2=0\)
\(\Leftrightarrow\left(a+c\right)^2+\left(b+c\right)^2=0\)
=> a + c = 0 và b + c = 0
=> a = b = -c
\(\Rightarrow\frac{1}{x}=\frac{1}{y}=-\frac{1}{z}\)
Khi đó , ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=-\frac{2}{z}+\frac{1}{z}=-\frac{1}{z}=2\Rightarrow z=-\frac{1}{2}\)
\(P=\left(x+2y+z\right)^2=4z^2\) \(=4.\left(-\frac{1}{2}\right)^2=1\)
Tham khảo nha
b: 5x^2+5y^2+8xy-2x+2y+2=0
=>4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0
=>(x-1)^2+(y+1)^2+(2x+2y)^2=0
=>x=1 và y=-1
M=(1-1)^2015+(1-2)^2016+(-1+1)^2017=1
2) \(\hept{\begin{cases}^{x^2-xy=y^2-yz}\left(1\right)\\^{y^2-yz=z^2-zx}\left(2\right)\\^{z^2-zx=x^2-xy}\left(3\right)\end{cases}}\)
lấy (2) - (1) suy ra\(2yz=2y^2+xy+xz-x^2-z^2\)
lấy (3) - (1) suy ra \(2xy=zx+yz-z^2+2x^2-y^2\)
lấy (3) - (2) suy ra \(2zx=xy+yz+2z^2-x^2-y^2\)
cộng lại đc \(yz+xz+xy=0\) do đó \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{yz+xz+xy}{xyz}=0\)