Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ÁP dụng BĐT Mincopxki, ta có:
\(A\ge\sqrt{\left(x+y\right)^2+\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2}\)
\(=\sqrt{\left(x+y\right)^2+\dfrac{\left(x+y\right)^2}{\left(xy\right)^2}}\)
\(\ge\sqrt{2\sqrt{\left(x+y\right)^2.\dfrac{\left(x+y\right)^2}{\left(xy\right)^2}}}=\sqrt{\dfrac{2\left(x+y\right)^2}{xy}}\) (cô si)
\(\ge\sqrt{\dfrac{2.4xy}{xy}}=\sqrt{8}=2\sqrt{2}\left(Côsi\right)\)
Min \(A=2\sqrt{2}\Leftrightarrow x=y\)
\(A\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{1}{2}\left(x+y+z\right)\ge\dfrac{1}{2}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=\dfrac{1}{2}\)
\(A_{min}=\dfrac{1}{2}\) khi \(x=y=z=\dfrac{1}{3}\)
\(P=\dfrac{y}{x}+\dfrac{x}{y}+\left(\dfrac{x}{3y}+3xy+\dfrac{1}{3}+\dfrac{1}{3}\right)+12\left(xy+\dfrac{1}{9}\right)-2\)
\(P\ge2\sqrt{\dfrac{xy}{xy}}+4\sqrt[4]{\dfrac{3x^2y}{27y}}+12.2\sqrt{\dfrac{xy}{9}}-2\)
\(P\ge4\sqrt{\dfrac{x}{3}}+8\sqrt{xy}=4\left(2\sqrt{xy}+\sqrt{\dfrac{x}{3}}\right)=4\)
\(P_{min}=4\) khi \(x=y=\dfrac{1}{3}\)
áp dụng BDT AM-GM \(=>x+y\ge2\sqrt{xy}=>\left(x+y\right)^2\ge4xy\left(1\right)\)
mà \(x+y\le1=>\left(x+y\right)^2\le1\left(2\right)\)
(1)(2)\(=>4xy\le\left(x+y\right)^2\le1=>4xy\le1=>xy\le\dfrac{1}{4}\)
\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\sqrt{1+x^2y^2}\ge2\sqrt{\dfrac{1+x^2y^2}{xy}}=2\sqrt{\dfrac{1}{xy}+xy}\)
\(=2\sqrt{\dfrac{1}{xy}+16xy-15xy}=2\sqrt{2\sqrt{16}-\dfrac{15}{4}}=\sqrt{17}\)
dấu"=" xảy ra<=>\(x=y=\dfrac{1}{2}\)
\(1\ge x+y\ge2\sqrt{xy}\Rightarrow xy\le\dfrac{1}{4}\Rightarrow\dfrac{1}{xy}\ge4\)
Ta có:
\(A\ge\dfrac{2}{\sqrt{xy}}.\sqrt{1+x^2y^2}=2\sqrt{\dfrac{1}{xy}+xy}=2\sqrt{\left(xy+\dfrac{1}{16xy}\right)+\dfrac{15}{16}.\dfrac{1}{xy}}\)
\(A\ge2\sqrt{2\sqrt{\dfrac{xy}{16xy}}+\dfrac{15}{16}.4}=\sqrt{17}\)
\(A_{min}=\sqrt{17}\) khi \(x=y=\dfrac{1}{2}\)
bài 3:
a, đặt x12=y9=z5=k
=>x=12k,y=9k,z=5k
ta có: ayz=20=> 12k.9k.5k=20
=> (12.9.5)k^3=20
=>540.k^3=20
=>k^3=20/540=1/27
=>k=1/3
=>x=12.1/3=4
y=9.1/3=3
z=5.1/3=5/3
vậy x=4,y=3,z=5/3
b,ta có: x5=y7=z3=x225=y249=z29
A/D tính chất dãy tỉ số bằng nhau ta có:
x5=y7=z3=x225=y249=z29=x2+y2−z225+49−9=58565=9
=>x=5.9=45
y=7.9=63
z=3*9=27
vậy x=45,y=63,z=27
# Bài 1
* Ta cm BĐT sau \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\) (1) bằng cách biến đổi tương đương
* Với \(x,y>0\) áp dụng (1) ta có
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{\left(\sqrt{x}\right)^2}+\dfrac{1}{\left(\sqrt{y}\right)^2}\ge\dfrac{1}{2}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)^2\)
Mà \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\)
\(\Rightarrow\) \(\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)^2\le1\) \(\Leftrightarrow\) \(0< \dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\le1\) (I)
* Ta cm BĐT phụ \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) với \(a,b>0\) (2)
Áp dụng (2) với x , y > 0 ta có
\(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\ge\dfrac{4}{\sqrt{x}+\sqrt{y}}\) (II)
* Từ (I) và (II) \(\Rightarrow\) \(\dfrac{4}{\sqrt{x}+\sqrt{y}}\le1\)
\(\Leftrightarrow\) \(\sqrt{x}+\sqrt{y}\ge4\)
Dấu "=" xra khi \(x=y=4\)
Vậy min \(\sqrt{x}+\sqrt{y}=4\) khi \(x=y=4\)
\(A\ge\dfrac{\left(x+y\right)^2}{2xy}+\dfrac{\sqrt{xy}}{x+y}\)
\(A\ge\dfrac{7\left(x+y\right)^2}{16xy}+\dfrac{\left(x+y\right)^2}{16xy}+\dfrac{\sqrt{xy}}{2\left(x+y\right)}+\dfrac{\sqrt{xy}}{2\left(x+y\right)}\)
\(A\ge\dfrac{7.4xy}{16xy}+3\sqrt[3]{\dfrac{\left(x+y\right)^2xy}{16.4.xy\left(x+y\right)^2}}=\dfrac{5}{2}\)
Dấu "=" xảy ra khi \(x=y\)
\(\dfrac{x^2}{x+y}+\dfrac{y^2}{y+z}+\dfrac{z^2}{x+z}\ge\dfrac{x^2}{x+y+z}+\dfrac{y^2}{x+y+z}+\dfrac{z^2}{x+y+z}=\dfrac{x^2+y^2+z^2}{x+y+z}=\dfrac{\left(x+y+z\right)^2-2\left(\sqrt{xy}+\sqrt{zx}+\sqrt{yz}\right)}{x+y+z}\ge\dfrac{1-2.1}{1}=-1\)Áp dụng bất đẳng thức cô-si ta có:
\(x+y\ge2\sqrt{xy}\) , \(x+z\ge2\sqrt{xz}\) , \(y+z\ge2\sqrt{yz}\)
Cộng vế với vế suy ra:
\(2\left(x+y+z\right)\ge2\left(\sqrt{xy}+\sqrt{zx}+\sqrt{yz}\right)\\ \Leftrightarrow x+y+z\ge1\)
Vậy
Trà ơi ! Mình xin lỗi bạn nhiều lắm bài đó mình lỡ giải sai, để mình sữa lại cho bạn:
Đầu tiên ta vẫn có:\(x+y+z\ge1\) (chứng minh trên)
Vậy \(\dfrac{x^2}{x+y}+\dfrac{y^2}{y+z}+\dfrac{z^2}{z+x}\ge\dfrac{x^2}{x+y+z}+\dfrac{y^2}{x+y+z}+\dfrac{z^2}{x+y+z}=\dfrac{x^2+y^2+z^2}{x+y+z}\ge x^2+y^2+z^2\ge0\)