Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+y^3+z^3-3xyz=0\)
\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)=0\)
\(\Leftrightarrow x^2+y^2+z^2-xy-xz-yz=0\)
\(\Leftrightarrow x=y=z\)
Từ \(x\left(\dfrac{1}{y}+\dfrac{1}{z}\right)+y\left(\dfrac{1}{z}+\dfrac{1}{x}\right)+z\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=-2\) ta có:
\(x^2y+y^2z+z^2x+xy^2+yz^2+zx^2+2xyz=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\).
Không mất tính tổng quát, giả sử x + y = 0
\(\Leftrightarrow x=-y\)
\(\Leftrightarrow x^3=-y^3\).
Kết hợp với \(x^3+y^3+z^3=1\) ta có \(z^3=1\Leftrightarrow z=1\).
Vậy \(P=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{-y}+\dfrac{1}{y}+\dfrac{1}{1}=1\).
Ta rút gọn tử thức trc: \(x^3+y^3+z^3-3xyz=x^3+y^3+z^3+x^2y-x^2y+xy^2-xy^2+y^2z-y^2z+yz^2-yz^2+x^2z-x^2z+xz^2-xz^2-xyz-xyz-xyz=x^2\left(x+y+z\right)+y^2\left(x+y+z\right)+z^2\left(x+y+z\right)-x\left(x+y+z\right)-yz\left(x+y+z\right)-xz\left(x+y+z\right)=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=\frac{1}{2}\left(x+y+z\right)\left(x^2-2xy+y^2+y^2-2yz+z^2+z^2-2xz+x^2\right)=\frac{1}{2}\left(x+y+z\right)\left(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right)\)tới đây rút gọn đc rồi chứ
Lời giải:
\(A=\frac{x^3-y^3-z^3-3xyz}{(x+y)^2+(y-z)^2+(x+z)^2}=\frac{(x-y)^3+3xy(x-y)-z^3-3xyz}{x^2+y^2+2xy+y^2-2yz+z^2+z^2+x^2+2xz}\)
\(=\frac{(x-y)^3-z^3+3xy(x-y-z)}{2x^2+2y^2+2z^2+2xy-2yz+2xz}=\frac{(x-y-z)[(x-y)^2+z(x-y)+z^2]+3xy(x-y-z)}{2(x^2+y^2+xy-yz+xz)}\)
\(=\frac{(x-y-z)[(x-y)^2+z(x-y)+z^2+3xy]}{2(x^2+y^2+xy-yz+xz)}=\frac{(x-y-z)(x^2+y^2+z^2+xy-yz+xz)}{2(x^2+y^2+z^2+xy-yz+xz)}=\frac{x-y-z}{2}\)
a: Ta có: \(\left(x+y\right)^2\)
\(=x^2+2xy+y^2\)
\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)
\(x^3+y^3+z^3=3xyz\)
\(\Rightarrow x^3+y^3+z^3-3xyz=0\)
\(\Rightarrow\left(x+y\right)^3-3x^2y-3xy^2+z^3-3xyz=0\)
\(\Rightarrow\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)=0\)
\(\Rightarrow\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2-3xy\right]=0\)
\(\Rightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)
\(\Rightarrow\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)
\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\) (do \(x+y+z\ne0\))
\(\Rightarrow\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}\)\(\Rightarrow\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\)\(\Rightarrow\begin{cases}x=y\\y=z\\z=x\end{cases}\)\(\Rightarrow x=y=z\)
\(\Rightarrow P=\left(1+\frac{1}{1}\right)\left(1+\frac{1}{1}\right)\left(1+\frac{1}{1}\right)=2\cdot2\cdot2=8\)
8