Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác AHC và tam giác AHC có: AH chung
AB = AC do tam giác ABC cân tại A (gt)
góc AHB = góc AHC = 90
=> tam giác AHC = tam giác AHC (ch-cgv)
b, tam giác AHC = tam giác AHC (câu a)
=> CH = BH (đn)
xét tma giác BHN và tam giác CHM có: góc MHC = góc NHB (đối đỉnh)
HN = HM (gt)
=> tam giác BHN = tam giác CHM (c-g-c)
=> góc BNH = góc HMC (đn) mà 2 góc này slt
=> BN // AC (đl)
a: Xét ΔBAK có BA=BK
nên ΔBAK cân tại B
b: góc BAH+góc B=90 độ
góc ACB+góc B=90 độ
=>góc BAH=góc ACB
góc HAK+góc BKA=90 độ
góc KAI+góc BAK=90 độ
mà góc BKA=góc BAK
nên góc HAK=góc KAI
d: (AH+BC)^2=AH^2+2*AH*BC+BC^2
=AH^2+2*AB*AC+AB^2+AC^2
=AH^2+(AB+AC)^2>(AB+AC)^2
=>AH+BC>AB+AC
c: AH+BC>AB+AC
=>BC-AB>AC-AH
a: Xét ΔOMA vuông tại M và ΔOMB vuông tại M có
OM chung
góc AOM=góc BOM
=>ΔOMA=ΔOMB
=>OA=OB
b: Xét ΔOPM và ΔOQM có
OP=OQ
góc POM=góc QOM
OM chung
=>ΔOPM=ΔOQM
c: Xét ΔOBA có
OM,BP là trung tuyến
OM cắt BP tại I
=>I là trọng tâm
=>A,I,Q thẳng hàng
a) Xét 2 tam giác OAM vuông tại A và tam giác OBM vuông tại B, áp dụng định lí PYTAGO:
\(\hept{\begin{cases}OM^2=OA^2+MA^2\\OM^2=OB^2+MB^2\end{cases}}\)Mà OA=OB (theo đề) nên MA=MB
b) 2 tam giác OAM và tam giác OBM có: OA=OB, MA=MB, OM chung
\(\Rightarrow\Delta OAM=\Delta OBM\left(c.c.c\right)\)
\(\Rightarrow\widehat{AOM}=\widehat{BOM}\)hay \(\widehat{xOM}=\widehat{yOM}\)nên OM là phân giác \(\widehat{xOy}\)
Bài làm :
a, Xét hai tam giác vuông OAM và tam giác vuông OBM có :
góc OAM = góc OBM = 90độ
cạnh OM chung
OA = OB ( theo bài cho )
Do đó : tam giác OAM = tam giác OBM ( cạnh huyền - cạnh góc vuông )
=> MA = MB ( hai cạnh tương ứng )
b, Theo câu a : tam giác OAM = tam giác OBM
=> góc AOM = góc BOM ( hai góc tương ứng )
Suy ra : OM là tia phân giác góc AOB
hay OM là tia phân giác góc xOy .
Học tốt nha