Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(2x^2+x=3y^2+y\)
\(\Leftrightarrow\) \(\left(x-y\right)\left(2x+2y+1\right)=y^2\)
Gọi \(d\) là \(ƯCLN\left(x-y,2x+2y+1\right)\) (với \(d\in N^{\text{*}}\)). Khi đó, ta suy ra
\(\hept{\begin{cases}\left(x-y\right)\leftrightarrow\left(1\right)\\\left(2x+2y+1\right)\leftrightarrow\left(2\right)\end{cases}}\) chia hết cho \(d\) \(\Rightarrow\) \(\left(x-y\right)\left(2x+2y+1\right)\) chia hết cho \(d^2\)
Hay \(y^2\) chia hết cho \(d^2\) tức là \(y\) chia hết cho \(d\)
Nhưng vì \(x-y\) chia hết cho \(d\) (theo \(\left(1\right)\)) nên \(x\) cũng phải chia hết cho \(d\)
\(\Rightarrow\) \(2x+2y\) chia hết cho \(d\) \(\left(3\right)\)
Từ \(\left(2\right)\) và \(\left(3\right)\) suy ra \(1\) chia hết cho \(d\)
Do đó, \(d=1\) đồng nghĩa với việc \(\left(x-y,2x+2y+1\right)=1\)
Vậy, phân số \(\frac{x-y}{2x+2y+1}\) tối giản vì cùng nguyên tố cùng nhau
Ta có \(ax^3=by^3=cz^3\Leftrightarrow\dfrac{ax^2}{\dfrac{1}{x}}=\dfrac{by^2}{\dfrac{1}{y}}=\dfrac{cz^2}{\dfrac{1}{z}}=\dfrac{ax^2+by^2+cz^2}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}=ax^2+by^2+cz^2\Leftrightarrow\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{ax^3}=\sqrt[3]{by^3}=\sqrt[3]{cz^3}=\dfrac{\sqrt[3]{a}}{\dfrac{1}{x}}+\dfrac{\sqrt[3]{b}}{\dfrac{1}{y}}+\dfrac{\sqrt[3]{c}}{\dfrac{1}{z}}=\dfrac{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)Vậy \(\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)
Lời giải:
$(x-y)^2\geq 0$
$\Leftrightarrow x^2+y^2\geq 2xy$
$\Leftrightarrow 2(x^2+y^2)\geq (x+y)^2$
$\Leftrightarrow 2\geq (x+y)^2$
$\Leftrightarrow \sqrt{2}\geq x+y\geq -\sqrt{2}$
Ta có đpcm.
Từ giả thiết : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\Rightarrow xy+yz+zx=xyz\)
Ta có : \(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\)
Vì hai vế luôn dương nên ta bình phương hai vế được :
\(\left(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\right)^2\ge\left(\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\)
Xét \(\left(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\right)^2\)
\(=\left(x+y+z\right)+\left(xy+yz+zx\right)+2\left(\sqrt{x+yz}.\sqrt{y+zx}+\sqrt{y+zx}.\sqrt{z+xy}+\sqrt{z+xy}.\sqrt{x+yz}\right)\)
Xét \(\left(\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\)
\(=xyz+\left(x+y+z\right)+2\left(x\sqrt{yz}+y\sqrt{xz}+z\sqrt{xy}+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)
Suy ra : \(\sqrt{x+yz}.\sqrt{y+zx}+\sqrt{y+zx}.\sqrt{z+xy}+\sqrt{z+xy}.\sqrt{x+yz}\ge\)
\(\ge x\sqrt{yz}+y\sqrt{xz}+z\sqrt{xy}+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\) (*)
Mà theo bất đẳng thức Bunhiacopxki , ta có :
\(\sqrt{\left(x+yz\right)}.\sqrt{y+zx}\ge\sqrt{xy}+\sqrt{yz.zx}=\sqrt{xy}+z\sqrt{xy}\) (1)
\(\sqrt{y+zx}.\sqrt{z+xy}\ge\sqrt{yz}+x\sqrt{yz}\)(2)
\(\sqrt{z+xy}.\sqrt{x+yz}\ge\sqrt{xz}+y\sqrt{xz}\)(3)
Cộng (1) , (2) và (3) theo vế ta được (*) đúng
Vậy bđt ban đầu được chứng minh.
tk mik nha ! mik đang bị âm điểm! ko ai trả lời mà!