K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2016

Ta có:

\(2x^2+x=3y^2+y\)

\(\Leftrightarrow\)  \(\left(x-y\right)\left(2x+2y+1\right)=y^2\)  

Gọi  \(d\)  là  \(ƯCLN\left(x-y,2x+2y+1\right)\)  (với  \(d\in N^{\text{*}}\)). Khi đó, ta suy ra

\(\hept{\begin{cases}\left(x-y\right)\leftrightarrow\left(1\right)\\\left(2x+2y+1\right)\leftrightarrow\left(2\right)\end{cases}}\)  chia hết cho  \(d\)  \(\Rightarrow\)  \(\left(x-y\right)\left(2x+2y+1\right)\)  chia hết cho  \(d^2\)

Hay  \(y^2\)  chia hết cho  \(d^2\)  tức là  \(y\) chia hết cho  \(d\)

Nhưng vì  \(x-y\)   chia hết cho  \(d\)  (theo  \(\left(1\right)\)) nên  \(x\)  cũng phải chia hết cho  \(d\)

\(\Rightarrow\)  \(2x+2y\)  chia hết  cho  \(d\)  \(\left(3\right)\)

Từ  \(\left(2\right)\) và    \(\left(3\right)\)  suy ra  \(1\)  chia hết cho  \(d\)

Do đó,  \(d=1\)  đồng nghĩa với việc  \(\left(x-y,2x+2y+1\right)=1\)

Vậy,  phân số  \(\frac{x-y}{2x+2y+1}\)  tối giản vì cùng  nguyên tố cùng nhau

8 tháng 8 2018

lam thế  nao vậy?

25 tháng 11 2018

Ta có \(ax^3=by^3=cz^3\Leftrightarrow\dfrac{ax^2}{\dfrac{1}{x}}=\dfrac{by^2}{\dfrac{1}{y}}=\dfrac{cz^2}{\dfrac{1}{z}}=\dfrac{ax^2+by^2+cz^2}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}=ax^2+by^2+cz^2\Leftrightarrow\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{ax^3}=\sqrt[3]{by^3}=\sqrt[3]{cz^3}=\dfrac{\sqrt[3]{a}}{\dfrac{1}{x}}+\dfrac{\sqrt[3]{b}}{\dfrac{1}{y}}+\dfrac{\sqrt[3]{c}}{\dfrac{1}{z}}=\dfrac{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)Vậy \(\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2021

Lời giải:

$(x-y)^2\geq 0$ 

$\Leftrightarrow x^2+y^2\geq 2xy$

$\Leftrightarrow 2(x^2+y^2)\geq (x+y)^2$
$\Leftrightarrow 2\geq (x+y)^2$

$\Leftrightarrow \sqrt{2}\geq x+y\geq -\sqrt{2}$

Ta có đpcm.

17 tháng 7 2021

mình cảm ơn ạ

19 tháng 9 2016

Từ giả thiết : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\Rightarrow xy+yz+zx=xyz\)

Ta có : \(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\)

Vì hai vế luôn dương nên ta bình phương hai vế được : 

\(\left(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\right)^2\ge\left(\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\)

Xét \(\left(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\right)^2\)

\(=\left(x+y+z\right)+\left(xy+yz+zx\right)+2\left(\sqrt{x+yz}.\sqrt{y+zx}+\sqrt{y+zx}.\sqrt{z+xy}+\sqrt{z+xy}.\sqrt{x+yz}\right)\)

Xét \(\left(\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\)

\(=xyz+\left(x+y+z\right)+2\left(x\sqrt{yz}+y\sqrt{xz}+z\sqrt{xy}+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)

Suy ra : \(\sqrt{x+yz}.\sqrt{y+zx}+\sqrt{y+zx}.\sqrt{z+xy}+\sqrt{z+xy}.\sqrt{x+yz}\ge\)

\(\ge x\sqrt{yz}+y\sqrt{xz}+z\sqrt{xy}+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\) (*)

Mà theo bất đẳng thức Bunhiacopxki , ta có : 

\(\sqrt{\left(x+yz\right)}.\sqrt{y+zx}\ge\sqrt{xy}+\sqrt{yz.zx}=\sqrt{xy}+z\sqrt{xy}\) (1)

\(\sqrt{y+zx}.\sqrt{z+xy}\ge\sqrt{yz}+x\sqrt{yz}\)(2)

\(\sqrt{z+xy}.\sqrt{x+yz}\ge\sqrt{xz}+y\sqrt{xz}\)(3)

Cộng (1) , (2) và (3) theo vế ta được (*) đúng

Vậy bđt ban đầu được chứng minh.

19 tháng 9 2016

chịu thua