Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta có: \(\left(2x+y\right)⋮9\Leftrightarrow5\left(2x+y\right)⋮9\)
\(\Leftrightarrow\left(10x+5y\right)⋮9.\) Do \(9y⋮9\) nên:
\(\left(10x+5y+9y\right)⋮9\Leftrightarrow\left(10x+14y\right)⋮9\)
\(\Leftrightarrow2\left(5x+7y\right)⋮9.\) Mà \(\left(2;9\right)=1\)
\(\Leftrightarrow\left(5x+7y\right)⋮9\)
Vậy \(\left(2x+y\right)⋮9\Leftrightarrow\left(5x+7y\right)⋮9\) (Đpcm)
\(2x+y⋮9\\ \Rightarrow2\left(2x+y\right)⋮9\\ \Rightarrow4x+2y⋮9\)
Ta có : \(\left(4x+2y\right)+\left(5x+7y\right)=9\left(x+y\right)⋮9\)
Vì 4x +2y và 9(x+y) chia hết cho 9 nên 5x+7y chia hết cho 9
1 giải
Ta có 17 chia hết cho 17
suy ra 17a+3a+b chia hết cho 17
suy ra 20a+2b chia hết cho 17
rút gọn cho 2
suy ra 10a+b chia hét cho 17
2 giải
* nếu a-5b chia hết cho 17 thì 10a + b chia hết cho 17
vì a-5b chia hết cho 17 nên 10(a-5b) chia hết cho 17 => 10a-50b chia hết cho 17 => 10a-50b+51b chia hết cho 17 hay 10a + b chia hết cho 17 (1) *
nếu 10a + b chia hết cho 17 thì a-5b chia hết cho 17
vì 10a+b chia hết cho 17 nên 10a + b - 51b chia hết cho 17 => 10a - 50b chia hết cho 17 => 10(a-5) chia hết cho 17 mà (10;17)=1 nên a-5b chia hết cho 17 (2)
Từ (1) và (2) suy ra điều phải chứng minh
3 bó tay
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
a)2x+y=7(2x+y)=14x+7y
Do 2x+9 chia hết cho 9 =>14x+7y chia hết cho 9
9x chia hết cho 9 =>14x+7y-9x=5x+7y chia hết cho 9
b)p và p+2 là số nguyên tố lớn hơn 3 nên p+p+2=2p+2 chia hết cho 2
p là số nguyên tố lớn hơn 3 nên
*)P=3k(loại vì 3k là hợp số có ước là 3 và k)
*)p=3k+1(loại vì số nguyên tố lớn hơn 3 là số lẻ =>3k+1 là số chẵn)
*)p=3k+2(TM)
=>2p+2=6k+4+2=6k+6 chia hết cho 3
2p+2 chia hết cho 2 và 3=>2p+2 chia hết cho 6
=>(2p+2).1/2=p+1 chia hết cho 6
Ta có
\(9x+9y⋮9\)
\(2x+y⋮9\Rightarrow2\left(2x+y\right)=4x+2y⋮9\)
\(\Rightarrow9x+9y-\left(4x+2y\right)=5x+7y⋮9\)
x + 2y chia hết cho 7 => 5(x + 2y) = 5x + 10y chia hết cho 7 => 5x + 10y - 14y = 5x - 4y chia hết cho 7 (vì 14y chia hết cho 7)
2x+y chia hết cho 9
=>5(2x+y) chia hết cho 9
=>10x+5y chia hết cho 9
=>10x+5y+9y chia hết cho 9
=>10x+14y chia hết cho 9
=>2(5x+7y) chia hết cho 9
Vì (2;9)=1=>5x+7y chia hết cho 9
=>đpcm