Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy rằng \(\sqrt{x};\sqrt{y}\) không thể cùng đồng thời là số vô tỉ hoặc có 1 số vô tỉ, 1 số hữu tỉ hoặc có 1 số hữu tỉ, 1 số tự nhiên hoặc có 1 số vô tỉ, 1 số tự nhiên vì \(\sqrt{x}+\sqrt{y}=a\in N\)do đó \(\sqrt{x};\sqrt{y}\) chỉ có thể cùng hữu tỉ hoặc cùng là số tự nhiên
Giả sử \(\sqrt{x};\sqrt{y}\) là số hữu tỉ thì \(\left\{{}\begin{matrix}\sqrt{x}=\dfrac{b}{d}\left(b,d\ne0;b,d\in Z\right)\\\sqrt{y}=\dfrac{c}{e}\left(c,e\ne0;c,e\in Z\right)\end{matrix}\right.\); b,d cùng dấu; c,e cùng dấu; (b,d)=1; (c,e)=1
Ta có: \(\sqrt{x}+\sqrt{y}=\dfrac{b}{d}+\dfrac{c}{e}=\dfrac{be+cd}{de}=a\in N\)
\(\Rightarrow\left\{{}\begin{matrix}be+cd⋮d\\be+cd⋮e\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}be⋮d\\cd⋮e\end{matrix}\right.\). Mà (b,d)=1; (c,e)=1 nên \(\left\{{}\begin{matrix}e⋮d\\d⋮e\end{matrix}\right.\)=> d = e
Lại có: \(\left(\sqrt{x}+\sqrt{y}\right)^2=x+y+2\sqrt{xy}=a^2\in N\) và x;y \(\in N\)
nên \(2\sqrt{xy}=2.\dfrac{bc}{de}=2.\dfrac{bc}{d^2}=2.\dfrac{bc}{e^2}\in N\)
+) d (hay e) \(⋮2\) thì d2 (hay e2) \(⋮4\) mà \(2.\dfrac{bc}{d^2}\) (hay \(2.\dfrac{bc}{e^2}\)) \(\in N\)nên bc \(⋮2\) => \(\left[{}\begin{matrix}b⋮2\\c⋮2\end{matrix}\right.\), mâu thuẫn với (b,d)=1; (c;e)=1
+) d (hay e) \(⋮̸\)2 thì \(\dfrac{bc}{d^2}\in N\Rightarrow\) \(bc⋮d^2\) mà (b;d)=1 nên c \(⋮d^2\) hay \(c⋮e^2\), mâu thuẫn với (c;e)=1
Như vậy điều giả sử là sai
=> \(\sqrt{x};\sqrt{y}\in N\left(đpcm\right)\)
ĐẶt \(A=x^2+y^2+z^2\Rightarrow4A-12=4\left(x^2+y^2+z^2\right)-2\left(x+y+z+xy+yz+zx\right)\)
\(\Rightarrow3A-12=\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2+\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2-3\)
\(\Rightarrow3A\ge9\Rightarrow A\ge3\)
dấu= xảy ra khi x=y=z=1
Gọi d là ước chung lớn nhất của x, y thì ta có
\(\hept{\begin{cases}x=da\\y=db\end{cases}}\)với a, b nguyên tố cùng nhau
Thế vào bài toán ta được
\(d^3a^3-d^3b^3=95\left(d^2a^2+d^2b^2\right)\)
\(\Leftrightarrow d\left(a-b\right)\left(a^2+ab+b^2\right)=95\left(a^2+b^2\right)\)
Dễ thấy \(a^2+ab+b^2;a^2+b^2\)nguyên tố cùng nhau
\(\Rightarrow95⋮a^2+ab+b^2\)
Tới đây làm nốt
b/ \(\left(x-y\right)^3+\left(y-x\right)^3+3|2-x|=27\)
\(\Leftrightarrow|2-x|=9\)