Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2 nhân p vs x+y+xy rồi t định áp dụng bđt (x+y+z)(1/x+1/y+1/z)>=9 nhưng vướng
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$(\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy})(x^2+y^2+2xy)\geq (1+1+2)^2=16$
$\Rightarrow \frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}\geq \frac{16}{(x+y)^2}=16$
Áp dụng BĐT AM-GM:
$xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}$
$\Rightarrow \frac{2}{xy}\geq 8$
Cộng 2 BĐT trên lại:
$P\geq 16+8=24$
Vậy $P_{\min}=24$ khi $x=y=\frac{1}{2}$
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$(\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy})(x^2+y^2+2xy)\geq (1+1+2)^2=16$
$\Rightarrow \frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}\geq \frac{16}{(x+y)^2}=16$
Áp dụng BĐT AM-GM:
$xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}$
$\Rightarrow \frac{2}{xy}\geq 8$
Cộng 2 BĐT trên lại:
$P\geq 16+8=24$
Vậy $P_{\min}=24$ khi $x=y=\frac{1}{2}$
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
Nguyễn Linh Ch Thanks cô ạ,e thiếu + 2:(( ko hiểu sao dạo này e hay nhầm ạ:(
\(\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
\(=x^2y^2+2+\frac{1}{x^2y^2}\)
Đặt \(a=\frac{1}{x^2y^2}=\frac{1}{\left(xy\right)^2}\ge\frac{1}{\frac{\left(x+y\right)^4}{16}}=16\)
Ta có:
\(P=a+\frac{1}{a}+2=\left(\frac{1}{a}+\frac{a}{256}\right)+\frac{255a}{256}+2\)
Theo BĐT Cô-si ta có:
\(P\ge2\sqrt{\frac{1}{a}\cdot\frac{a}{256}}+\frac{255\cdot16}{256}+2=\frac{289}{16}\)
Dấu "=" xảy ra tại \(a=6\Rightarrow x=y=\frac{1}{2}\)
\(P=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
\(=x^2y^2+2+\frac{1}{x^2y^2}\)
Đặt \(\frac{1}{x^2y^2}=a\)
Ta có:\(a=\frac{1}{x^2y^2}=\frac{1}{\left(xy\right)^2}\ge\frac{1}{\frac{\left(x+y\right)^4}{16}}\ge16\)
Khi đó:
\(P=a+\frac{1}{a}+2=\left(\frac{1}{a}+\frac{a}{256}\right)+\frac{255a}{256}\)
Theo BĐT Cô si ( từ nay bỏ AM-GM,thấy quê quê sao á ) ta có:
\(P\ge2\sqrt{\frac{1}{a}\cdot\frac{a}{256}}+\frac{255\cdot16}{256}=\frac{27}{16}\)
Dấu "=" xảy ra tại \(x=y=\frac{1}{2}\)