K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2019

\(\sqrt{1+\sqrt{2}}.P=\sqrt{1+2x}.\sqrt{1+\sqrt{2}}+\sqrt{1+2y}.\sqrt{1+\sqrt{2}}\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt{1+\sqrt{2}}.P\le\frac{1+2x+1+\sqrt{2}+1+2y+1+\sqrt{2}}{2}\)

Áp dụng BĐT Cauchy-schwarz ta có:

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

\(\Leftrightarrow\sqrt{2}\ge x+y\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\)

\(\Rightarrow\sqrt{1+\sqrt{2}}P\le\frac{1+2x+1+\sqrt{2}+1+2y+1+\sqrt{2}}{2}\le\frac{4+2.\sqrt{2}+2.\sqrt{2}}{2}=2+2\sqrt{2}\)

\(\Leftrightarrow P\le\frac{2+2.\sqrt{2}}{\sqrt{1+\sqrt{2}}}\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\)

Mới nghĩ ra được max. Các cao nhân ai thấy sai thì sửa hộ e nhé.

 
18 tháng 5 2019

áp dụng bất đẳng thức bunhiacopxki 

\(P^2=\left(1.\sqrt{1+2x}+1.\sqrt{1+2y}\right)^2\le\left(1^2+1^2\right)\left(1+2x+1+2y\right)\)

    \(=4\left(1+x+y\right)\)

Lại có \(\left(x.1+y.1\right)^2\le\left(x^2+y^2\right)\left(1^2+1^2\right)\Leftrightarrow\left(x+y\right)^2\le2\left(x^2+y^2\right)=2.\)

\(\Rightarrow|x+y|\le\sqrt{2}.\Rightarrow-\sqrt{2}\le x+y\le\sqrt{2}\Leftrightarrow-\sqrt{2}+1\le1+x+y\le\sqrt{2}+1\)

\(\Rightarrow P^2\le4\left(1+x+y\right)\le4.\left(\sqrt{2}+1\right)\)

\(\Leftrightarrow-2\sqrt{\sqrt{2}+1}\le P\le2\sqrt{\sqrt{2}+1}\)

Vậy Max \(P=2\sqrt{\sqrt{2}+1}\Leftrightarrow x=y=\frac{1}{\sqrt{2}}.\)

sorry nhìu , nếu có đk x, y>=0 thì mk mới tìm được minP=3 

nếu k phải thì mong cao nhân chỉ cho ak

20 tháng 5 2019

\(M=5\left(x+y+z\right)^2+\left(x^2+y^2+z^2\right)+2.\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)

Áp dụng BĐT Cauchy-schwarz ta có:

\(M\ge5.\left(\frac{3}{4}\right)^2+\frac{\left(x+y+z\right)^2}{3}+2.\frac{\left(1+1+1\right)^2}{4\left(x+y+z\right)}=5.\frac{9}{16}+\frac{\frac{9}{16}}{3}+2.\frac{9}{\frac{4.3}{4}}=9\)

Dấu " = " xảy ra <=> a=b=c=1/4  ( cái này bạn tự giải rõ nhé)

20 tháng 5 2019

:D. cái gì đây

21 tháng 9 2019

Èo, ko gõ cái quái gì cũng bị chờ duyệt-_- Thua olm.

21 tháng 9 2019

Bài làm của em đầu tiên phải giả sử: \(3\ge y\ge x\ge z\ge0\)

Xét dấu nó thì e chỉ cần xét từng cái là được

Cái thứ nhất:

\(\sqrt{x+y}+\sqrt{y+z}=\sqrt{y}+\sqrt{x+y+z}\)

\(\Leftrightarrow\sqrt{\left(x+y\right)\left(y+z\right)}=\sqrt{y\left(x+y+z\right)}\)

\(\Leftrightarrow xz=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\z=0\end{cases}}\)

Cái thứ 2:

\(\sqrt{y}+\sqrt{z+x}=\sqrt{x+y+z}\)

\(\Leftrightarrow2\sqrt{y\left(x+z\right)}=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=0\\x+z=0\end{cases}}\)

Kết hợp cả 2 điều kiện thì suy ra được

\(x=z=0;y=3\)

26 tháng 2 2022

cho mk hỏi một chút là đây đích thực có phải lớp 1 ko ak?

2 tháng 7 2016

toán lớp 1 đây hả bạn lớp 6 còn chưa học tới nói chi là 1

 lớp 1 mà giải đươc bài này thì đúng là thánh

2 tháng 7 2016

day ma la toan lop 1 u

15 tháng 8 2018

đây là toán lớp 1 hả

15 tháng 8 2018

thế này thì 5 năm sau chắc hs lp 1 cng ko nghĩ ra mất

26 tháng 11 2021

cái này mà là toán lớp 1 á chịu thua ko giải được

26 tháng 11 2021

tôi ko hiẻu bạn đang nói cái méo gì

29 tháng 12 2015

lớp 1 chưa hok đâu bn tick nha

6 tháng 8 2018

Vãi cả "Toán Lớp 1"

26 tháng 2 2022

đây đích thực có phải lớp 1 ko ak?

chắc bn đây phải cấp 2 r