K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
19 tháng 5 2021

Ta có: 

\(P=\frac{x}{\sqrt{y}-1}+\frac{y}{\sqrt{x}-1}\ge\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\sqrt{x}+\sqrt{y}-2}\)

Đăt. \(t=\sqrt{x}+\sqrt{y}>2\).

Xét \(Q=\frac{t^2}{t-2}\Rightarrow Qt-2Q=t^2\Leftrightarrow t^2-Qt+2Q=0\)

Coi \(t\)là ẩn, \(Q\)là tham số. 

Để phương trình có nghiệm thì \(\Delta=Q^2-8Q\ge0\Leftrightarrow\orbr{\begin{cases}Q\ge8\\Q\le0\end{cases}}\Leftrightarrow Q\ge8\)(do \(Q>0\)

Suy ra \(P=\frac{x}{\sqrt{y}-1}+\frac{y}{\sqrt{x}-1}\ge\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\sqrt{x}+\sqrt{y}-2}\ge8\).

Dấu \(=\)xảy ra khi \(x=y=4\).

30 tháng 5 2019

Ta có \(\frac{y}{x\sqrt{y^2+1}}=\frac{y\sqrt{xz}}{x\sqrt{y\left(x+y+z\right)+xz}}=\frac{yz}{\sqrt{x\left(y+z\right).z\left(x+y\right)}}\ge\frac{2yz}{2xz+xy+yz}\)

Đặt \(a=xy,b=yz,c=xz\)=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Khi đó

\(P\ge\frac{2b}{2c+a+b}+\frac{2c}{2a+b+c}+\frac{2a}{2b+a+c}\ge\frac{2\left(a+b+c\right)^2}{b^2+c^2+a^2+3\left(ab+bc+ac\right)}\)

Xét \(P\ge\frac{3}{2}\)

=> \(4\left(a+b+c\right)^2\ge3\left(a^2+b^2+c^2\right)+9\left(ab+bc+ac\right)\)

<=> \(a^2+b^2+c^2\ge\left(ab+bc+ac\right)\)(luôn đúng )

Vậy \(MinP=\frac{3}{2}\)khi a=b=c=3=> \(x=y=z=\sqrt{3}\)

15 tháng 8 2020

+) \(P=\frac{x}{\sqrt{1-x^2}}+\frac{y}{\sqrt{1-y^2}}=\frac{x^2}{x\sqrt{1-x^2}}+\frac{y^2}{y\sqrt{1-y^2}}\)

\(\ge\frac{\left(x+y\right)^2}{x\sqrt{1-x^2}+y\sqrt{1-y^2}}=\frac{1}{x\sqrt{1-x^2}+y\sqrt{1-y^2}}\)

+) \(A=x\sqrt{1-x^2}+y\sqrt{1-y^2}\)

\(A^2=x^2+y^2-y^4-x^4+2xy\sqrt{\left(1-x^2\right)\left(1-y^2\right)}\)

+) \(B=x^2+y^2-x^4-y^4=x^2+\left(1-x\right)^2-x^4-\left(1-x\right)^4\)

\(-\frac{B}{2}+\frac{3}{16}=x^4-2x^3+2x^2-x+\frac{3}{16}=\left(x^2-x+\frac{3}{4}\right)\left(x-\frac{1}{2}\right)^2\ge0\)

\(\Leftrightarrow B\le\frac{3}{8}\)

+) \(A^2\le\frac{3}{8}+2\frac{\left(x+y\right)^2}{4}\sqrt{1-x^2-y^2+x^2y^2}\)

\(\le\frac{3}{8}+\frac{1}{2}\sqrt{1-\frac{\left(x+y\right)^2}{2}+\frac{\left(x+y\right)^4}{16}}=\frac{3}{8}+\frac{1}{2}\sqrt{1-\frac{1}{2}+\frac{1}{16}}=\frac{3}{8}+\frac{1}{2}\cdot\frac{3}{4}=\frac{3}{4}\)

\(\Rightarrow A\le\frac{\sqrt{3}}{2}\)

+) \(P=\frac{1}{A}\ge\frac{2\sqrt{3}}{3}\)

Vậy \(P_{min}=\frac{2\sqrt{3}}{3}\)khi \(x=y=\frac{1}{2}\)

* Mình làm hơi tắt và có vẻ hơi dài

15 tháng 8 2020

Từ điều kiện đề bài ta có: \(P=\frac{x}{\sqrt{y^2+2xy}}+\frac{y}{\sqrt{x^2+2xy}}\)

Theo Holder: \(P.P.\left[x\left(y^2+2xy\right)+y\left(x^2+2xy\right)\right]\ge\left(x+y\right)^3\)

\(\Rightarrow P^2\ge\frac{\left(x+y\right)^3}{x\left(y^2+2xy\right)+y\left(x^2+2xy\right)}\) (*)

Xét: \(\frac{\left(x+y\right)^3}{x\left(y^2+2xy\right)+y\left(x^2+2xy\right)}-\frac{4}{3}=\frac{\left(x+y\right)\left(x-y\right)^2}{x\left(y^2+2xy\right)+y\left(x^2+2xy\right)}\ge0\) (**)

Từ (*) và (**) suy ra: \(P\ge\frac{2}{\sqrt{3}}\)

Dấu "=" xảy ra khi x=y=1\2

1 tháng 8 2017

2. Xem tại đây

1.  \(P=\frac{1}{\sqrt{x.1}}+\frac{1}{\sqrt{y.1}}+\frac{1}{\sqrt{z.1}}\)

\(\ge\frac{1}{\frac{x+1}{2}}+\frac{1}{\frac{y+1}{2}}+\frac{1}{\frac{z+1}{2}}\)

\(=\frac{2}{x+1}+\frac{2}{y+1}+\frac{2}{z+1}\ge\frac{2.\left(1+1+1\right)^2}{x+y+z+3}=\frac{18}{3+3}=3\)

Đẳng thức xảy ra  \(\Leftrightarrow x=y=z=1\)

1 tháng 8 2017

1 ) có cách theo cosi đó 

áp dụng cosi cho 3 số dương ta có \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x}}+x\ge3\sqrt[3]{\frac{1}{\sqrt{x}}\times\frac{1}{\sqrt{x}}\times x}=3\sqrt[3]{1}=3\)(1)

\(\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{y}}+y\ge3\)(2)

\(\frac{1}{\sqrt{z}}+\frac{1}{\sqrt{z}}+z\ge3\)(3)

cộng các vế của (1),(2),(3), đc \(2\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)+\left(x+y+z\right)\ge9\Rightarrow2P+3\ge9\Rightarrow P\ge3\)

minP=3 khi x=y=z=1

18 tháng 5 2019

áp dụng bất đẳng thức Cauchy ngược dấu cho 2 số không âm ta có

\(\sqrt{\left(x-1\right).1}\le\frac{x-1+1}{2}=\frac{x}{2}\Rightarrow\frac{x}{\sqrt{x-1}}\ge2.\)

\(\sqrt{\left(\frac{y}{\sqrt{2}}-\sqrt{2}\right).\sqrt{2}}\le\frac{\frac{y}{\sqrt{2}}-\sqrt{2}+\sqrt{2}}{2}=\frac{y}{2\sqrt{2}}\Rightarrow\frac{y}{\sqrt{y-2}}\ge2\sqrt{2}.\)

\(\sqrt{\left(\frac{z}{\sqrt{3}}-\sqrt{3}\right).\sqrt{3}}\le\frac{\frac{z}{\sqrt{3}}-\sqrt{3}+\sqrt{3}}{2}=\frac{z}{2\sqrt{3}}\Rightarrow\frac{z}{\sqrt{z-3}}\ge2\sqrt{3}\)

\(\Rightarrow A\ge2+2\sqrt{2}+2\sqrt{3}\)

Vậy Min \(A=2+2\sqrt{2}+2\sqrt{3}\)

\(\Leftrightarrow\hept{\begin{cases}x-1=1\\\frac{y}{\sqrt{2}}-\sqrt{2}=\sqrt{2}\\\frac{z}{\sqrt{3}}-\sqrt{3}=\sqrt{3}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=4\\z=6\end{cases}\left(tmđk\right)}\)

30 tháng 5 2017

\(M^2=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2xy}{\sqrt{yz}}+\frac{2yz}{\sqrt{zx}}+\frac{2xz}{\sqrt{yz}}=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2x\sqrt{y}}{\sqrt{z}}+\frac{2y\sqrt{z}}{\sqrt{x}}+\frac{2z\sqrt{x}}{\sqrt{y}}\)

Áp dụng bđt Cô-si: \(\frac{x^2}{y}+\frac{x\sqrt{y}}{\sqrt{z}}+\frac{x\sqrt{y}}{\sqrt{z}}+z\ge4\sqrt[4]{\frac{x^2}{y}.\frac{x\sqrt{y}}{\sqrt{z}}.\frac{x\sqrt{y}}{\sqrt{z}}.z}=4x\)

tương tự \(\frac{y^2}{z}+\frac{y\sqrt{z}}{\sqrt{x}}+\frac{y\sqrt{z}}{\sqrt{x}}+x\ge4y\);\(\frac{z^2}{x}+\frac{z\sqrt{x}}{\sqrt{y}}+\frac{z\sqrt{x}}{\sqrt{y}}+y\ge4z\)

=>\(M^2+x+y+z\ge4\left(x+y+z\right)\Rightarrow M^2\ge3\left(x+y+z\right)\ge3.12=36\Rightarrow M\ge6\)

Dấu "=" xảy ra khi x=y=z=4

Vậy minM=6 khi x=y=z=4

30 tháng 5 2017

b1: Áp dụng bđt Cauchy Schwarz dạng Engel ta được:

\(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+y+y}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=\frac{2}{2}=1\)

=>minP=1 <=> x=y=z=2/3

19 tháng 5 2017

2, rút gọn B=x^2/(y-1)+y^2/(x-1) 

AM-GM : x^2/(y-1)+4(y-1) >/ 4x ; y^2/(x-1)+4(x-1) >/ 4y 

=> B >/ 4x-4(y-1)+4y-4(x-1)=4x-4y+4+4y-4x+4=8 

minB=8 

19 tháng 5 2017

Câu 1:

Áp dụng BĐT AM-GM ta có: \(x+1\ge2\sqrt{x}\)

\(\Rightarrow x+1+x+1\ge x+2\sqrt{x}+1\)

\(\Rightarrow2x+2\ge\left(\sqrt{x}+1\right)^2\left(1\right)\)

Tương tự cũng có: \(2y+2\ge\left(\sqrt{y}+1\right)^2\left(2\right)\)

Nhân theo vế của \(\left(1\right);\left(2\right)\) ta có:

\(\left(2x+2\right)\left(2y+2\right)\ge\left(\sqrt{x}+1\right)^2\left(\sqrt{y}+1\right)^2\ge16\)

\(\Rightarrow4\left(x+1\right)\left(y+1\right)\ge16\Rightarrow\left(x+1\right)\left(y+1\right)\ge4\)

Lại áp dụng BĐT AM-GM ta có:

\(\left(x+1\right)+\left(y+1\right)\ge2\sqrt{\left(x+1\right)\left(y+1\right)}\ge4\)

\(\Rightarrow x+y\ge2\). Giờ thì áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(A=\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\ge2\)

Đẳng thức xảy ra khi \(x=y=1\)

14 tháng 8 2020

\(P=\frac{\sqrt{1+x^2+y^2}}{xy}+\frac{\sqrt{1+y^2+z^2}}{yz}+\frac{\sqrt{1+z^2+x^2}}{zx}\)

\(\ge\text{Σ}\frac{\sqrt{\frac{\left(1+x+y\right)^2}{3}}}{xy}\text{=}\frac{1+x+y}{xy\sqrt{3}}\)

\(=\frac{\sqrt{3}}{3}\left(\frac{1+x+y}{xy}+\frac{1+y+z}{yz}+\frac{1+z+x}{zx}\right)\)

\(=\frac{\sqrt{3}}{3}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}+\frac{1}{x}\right)\)

\(=\frac{\sqrt{3}}{3}\left(x+y+z+2xy+2yz+2zx\right)\)\(\ge\frac{\sqrt{3}}{3}\left(3\sqrt[3]{xyz}+2\cdot3\sqrt[3]{x^2y^2z^2}\right)=\frac{\sqrt{3}}{3}\left(3+6\right)=3\sqrt{3}\)

Dấu = xảy ra khi \(x=y=z=1\)