K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2021

\(A=3\left[\left(x+y\right)^2-2xy\right]+2xy\)

\(=3\left[7^2-2\cdot10\right]+2\cdot10=87+20=107\)

a: M=2(-2x-3xy^2+1)-3xy^2+1

=-4x-6xy^2+2-3xy^2+1

=-4x-9xy^2+3

b: Thay x=-2 và y=3 vào M, ta được:

M=2*(-2)-3*(-2)*3^2+1

=-4+1+6*9

=54-3

=51

15 tháng 9 2017

Ta có: 

A=x2-2xy+y2+4xy-4xy

=(x+y)2-4xy

=9-40

=-31

B=x2+y2+2xy-2xy

=(x+y)2-2xy

=9-20

=-11

C=x3+y3

=(x+y)(x2-xy+y2)

=3.(-21)

=-63

28 tháng 8 2019

Ta co:\(x^2-y=y^2-x\)

\(\Leftrightarrow\left(x-y\right)\left(x+y+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=y\\x+y=-1\end{cases}}\)

TH:\(x=y\left(l\right)\)(Vi x,y la 2 so khac nhau)

TH:\(x+y=-1\)

Ta co:\(A=\left(x+y\right)^2-3\left(x+y\right)=1+3=4\)

13 tháng 9 2021

a)A=(2x+3y)(x2-xy+1)-x2(2x-y)-3x tại x=-1;y=2

Rút gọn:

 A = 2x3 - 2x2y + 2x + 3x2y - 3xy2+ 3y - 2x3 + x2y - 3x  (phá ngoặc)

=> A = 2x2y - 3xy- x + 3y

Thay x = -1 và y = 2; ta được:

A = 23

b)B=2xy.(1/4x2-3y)+5y(xy-x3+1) tại x=1;y=1/2

B = x3y/2 - 6xy2 + 5xy2 - 5x3y + 5y (phá ngoặc)

B = -9x3y/10 - xy2 + 5y

Thay x = 1 và y = 1/2 ta được:

B = 0

 

Bài này tuy có hơi cồng kềnh chút nhưng chỉ cần em chịu khó phá ngoặc là sẽ giải quyết được nhé!

AH
Akai Haruma
Giáo viên
27 tháng 8 2023

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.

23 tháng 4 2021

\(x^2-2xy+y^2+3x-3y-4=0\)

\(\Leftrightarrow\left(x-y\right)^2+3\left(x-y\right)-4=0\)

\(\Leftrightarrow\left(x-y\right)\left(x-y+3\right)-4=0\)

Thay y = 3 vào biểu thức trên ta được : 

\(x\left(x-3\right)-4=0\)

\(\Leftrightarrow x^2-3x-4=0\Leftrightarrow\left(x-4\right)\left(x+1\right)=0\Leftrightarrow x=4;x=-1\)

Vậy với y = 3 thì x = 4 ; x = -1 

23 tháng 4 2021

Thay y = 3 vào bthuc ta được :

x2 - 6x + 9 + 3x - 9 - 4 = 0

<=> x2 - 3x - 4 = 0

<=> ( x + 1 )( x - 4 ) = 0

<=> x = -1 hoặc x = 4 

24 tháng 7 2019

\(x^2-y=y^2-x\)

\(\Rightarrow x^2-y^2+x-y=0\)

\(\Rightarrow\left(x-y\right)\left(x+y\right)+\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y+1\right)=0\)

Vì \(x\ne y\Rightarrow x-y\ne0\Rightarrow x+y+1=0\)

\(\Rightarrow x+y=-1\)và \(x+y-3=-4\)\(\left(1\right)\)

\(M=x^2+2xy-3x-3y+y^2\)

\(=\left(x+y\right)^2-3\left(x+y\right)\)

\(=\left(x+y\right)\left(x+y-3\right)\)

TThay (1) vào M , ta có :

\(M=\left(-1\right).\left(-4\right)=4\)