Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
Từ điều kiện bài này có thể đặt ẩn phụ và AM-GM ra luôn kết quả, nhưng hơi rắc rối khi người ta hỏi từ đâu mà có cách đặt ẩn phụ như vậy, do đó ta giải trâu :D
\(x^2+y^2+z^2+xyz=4\)
\(\Leftrightarrow\frac{x^2}{4}+\frac{y^2}{4}+\frac{z^2}{4}+2\left(\frac{x}{2}.\frac{y}{z}.\frac{z}{2}\right)=1\)
\(\Leftrightarrow\frac{xy}{2z}.\frac{xz}{2y}+\frac{xy}{2z}.\frac{yz}{2x}+\frac{yz}{2x}.\frac{xz}{2y}+2\left(\frac{xy}{2z}.\frac{yz}{2x}.\frac{xy}{2y}\right)=1\)
Đặt \(\left(\frac{xy}{2z};\frac{zx}{2y};\frac{yz}{2x}\right)=\left(m;n;p\right)\Rightarrow mn+np+pn+2mnp=1\)
\(\Leftrightarrow2\left(n+1\right)\left(m+1\right)\left(p+1\right)=\left(n+1\right)\left(m+1\right)+\left(n+1\right)\left(p+1\right)+\left(m+1\right)\left(p+1\right)\)
\(\Leftrightarrow\frac{1}{n+1}+\frac{1}{m+1}+\frac{1}{p+1}=2\)
\(\Leftrightarrow1=\frac{n}{n+1}+\frac{m}{m+1}+\frac{p}{p+1}\ge\frac{\left(\sqrt{n}+\sqrt{m}+\sqrt{p}\right)^2}{m+n+p+3}\)
\(\Leftrightarrow m+m+p+2\left(\sqrt{mn}+\sqrt{np}+\sqrt{mp}\right)\le m+n+p+3\)
\(\Leftrightarrow\sqrt{mn}+\sqrt{np}+\sqrt{mp}\le\frac{3}{2}\)
\(\Leftrightarrow\frac{x}{2}+\frac{y}{2}+\frac{z}{2}\le\frac{3}{2}\Leftrightarrow x+y+z\le3\)
Câu 1:
\(2xyz=1-\left(x+y+z\right)+xy+yz+zx\)
\(\Rightarrow xy+yz+zx=2xyz+\left(x+y+z\right)-1\)
\(VT=x^2+y^2+z^2=\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\)
\(=\left(x+y+z\right)^2-2\left(x+y+z\right)-4xyz+2\)
\(VT\ge\left(x+y+z\right)^2-2\left(x+y+z\right)-\frac{4}{27}\left(x+y+z\right)^3+2\)
\(VT\ge\frac{4}{27}\left[\frac{15}{4}-\left(x+y+z\right)\right]\left(x+y+z-\frac{3}{2}\right)^2+\frac{3}{2}\ge\frac{3}{2}\)
(Do \(0< x;y;z< 1\Rightarrow x+y+z< 3< \frac{15}{4}\))
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\)
Đặt \(\left\{{}\begin{matrix}x-y=a\\x-z=b\end{matrix}\right.\) \(\Rightarrow ab=1\)
\(S=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a-b\right)^2}=\frac{a^2+b^2}{a^2b^2}+\frac{1}{\left(a-b\right)^2}=a^2+b^2+\frac{1}{\left(a-b\right)^2}\)
\(S=a^2+b^2-2ab+\frac{1}{\left(a-b\right)^2}+2=\left(a-b\right)^2+\frac{1}{\left(a-b\right)^2}+2\)
\(S\ge2\sqrt{\frac{\left(a-b\right)^2}{\left(a-b\right)^2}}+2=4\) (đpcm)
\(\hept{\begin{cases}x+z=a\\y+z=b\end{cases}}\); \(x-y=\left(x+z\right)-\left(y+z\right)=a-b\)
\(ab=1\Rightarrow b=\frac{1}{a}\)
\(A=VT=\frac{1}{\left(a-b\right)^2}+\frac{1}{a^2}+\frac{1}{b^2}=\frac{1}{\left(a-\frac{1}{a}\right)^2}+\frac{1}{a^2}+a^2\)
\(=\frac{a^2}{\left(a^2-1\right)^2}+a^2+\frac{1}{a^2}\)
\(t=a^2>0\)
\(A=\frac{t}{\left(t-1\right)^2}+t+\frac{1}{t}\)
\(A-4=\frac{\left(t^2-3t+1\right)^2}{t\left(t-1\right)^2}\ge0\)
\(\Rightarrow A\ge4\)
Dấu bằng xảy ra khi \(t=a^2=\frac{3\pm\sqrt{5}}{2}\)\(\Leftrightarrow a=\sqrt{\frac{3\pm\sqrt{5}}{2}}\)
\(\Leftrightarrow\hept{\begin{cases}a=x+z=\sqrt{\frac{3+\sqrt{5}}{2}}\\b=y+z=\sqrt{\frac{3-\sqrt{5}}{2}}\end{cases}}\) và hoán vị còn lại
Hệ trên có vô số nghiệm, chẳng hạn
\(\hept{\begin{cases}z=\frac{1}{10}\\x=\sqrt{\frac{3+\sqrt{5}}{2}}-\frac{1}{10}\\y=\sqrt{\frac{3-\sqrt{5}}{2}}-\frac{1}{10}\end{cases}}\)
Đặt\(A=\frac{\left(1-x\right)\left(1-y\right)\left(1-z\right)}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)
\(A=\frac{\left(x+y\right)\left(y+z\right)\left(y+z\right)}{\left[\left(x+y\right)+\left(x+z\right)\right]\left[\left(x+y\right)+\left(y+z\right)\right]\left[\left(z+x\right)+\left(z+y\right)\right]}\)
Áp dụng BĐT AM-GM ta có:
\(A\le\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{8.\sqrt{\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2}}=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{8\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{1}{8}\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=z=\frac{1}{3}\)
?Amanda?, Phạm Lan Hương, Phạm Thị Diệu Huyền, Vũ Minh Tuấn, Nguyễn Ngọc Lộc , @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @Trần Thanh Phương
giúp e với ạ! Cần trước 5h chiều nay! Cảm ơn mn nhiều!
Tranh thủ làm 1, 2 bài rồi ăn cơm:
1/ Đặt \(m=n-2008>0\)
\(\Rightarrow2^{2008}\left(369+2^m\right)\) là số chính phương
\(\Rightarrow369+2^m\) là số chính phương
m lẻ thì số trên chia 3 dư 2 nên ko là số chính phương
\(\Rightarrow m=2k\Rightarrow369=x^2-\left(2^k\right)^2=\left(x-2^k\right)\left(x+2^k\right)\)
b/
\(2\left(a^2+b^2\right)\left(a+b-2\right)=a^4+b^4\) \(\left(a+b>2\right)\)
\(\Rightarrow2\left(a^2+b^2\right)\left(a+b-2\right)\ge\frac{1}{2}\left(a^2+b^2\right)^2\)
\(\Rightarrow a^2+b^2\le4\left(a+b-2\right)\)
\(\Rightarrow\left(a-2\right)^2+\left(b-2\right)^2\le0\Rightarrow a=b=2\)
\(\Rightarrow x=y=4\)
\(\frac{x}{1+x^2}=\frac{\frac{1}{x}}{\frac{1}{x^2}+1}=\frac{\frac{1}{x}}{\frac{1}{x^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}}=\frac{\frac{1}{x}}{\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{z}+\frac{1}{x}\right)}\)
\(=\frac{xyz}{xy\left(\frac{1}{x}+\frac{1}{y}\right)zx\left(\frac{1}{z}+\frac{1}{x}\right)}=\frac{xyz}{\left(x+y\right)\left(z+x\right)}\)
Tương tự, ta cũng có: \(\frac{2y}{1+y^2}=\frac{2xyz}{\left(x+y\right)\left(y+z\right)}\)\(;\)\(\frac{3z}{1+z^2}=\frac{3xyz}{\left(y+z\right)\left(z+x\right)}\)
\(VT=\frac{xyz}{\left(x+y\right)\left(z+x\right)}+\frac{2xyz}{\left(x+y\right)\left(y+z\right)}+\frac{3xyz}{\left(y+z\right)\left(z+x\right)}\)
\(=\frac{xyz\left(y+z\right)+2xyz\left(z+x\right)+3xyz\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\) ( đpcm )