K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2019

Ta có: \(\frac{1}{x+1}=1-\frac{1}{y+1}+1-\frac{1}{z+1}\)

\(=\frac{y}{y+1}+\frac{z}{z+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\)

Tương tự các BĐT còn lại rồi nhân theo vế thu được:

\(\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge8\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}.\frac{zx}{\left(z+1\right)\left(x+1\right)}.\frac{xy}{\left(x+1\right)\left(z+1\right)}}\)

\(\Rightarrow P=xyz\le\frac{1}{8}\)

Đẳng thức xảy ra khi x = y = z = 1/2

Vậy...

28 tháng 10 2019

Anh ơi em nghĩ phải lả \(+\frac{1}{x+y+z}\)thì mới đúng ạ

28 tháng 10 2019

sửa đề \(M=\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}+\frac{1}{x+y+z}\)

                                giải

Áp dụng bđt cô si cho 3 số dương \(x,y,z\)ta có:

\(\hept{\begin{cases}x^2+1\ge2\sqrt{x^2}=2x\\y^2+1\ge2\sqrt{y^2}=2y\\z^2+1\ge2\sqrt{z^2}=2z\end{cases}}\)

\(\Rightarrow\frac{x^2+1}{x}\ge2;\frac{y^2+1}{y}\ge2;\frac{z^2+1}{z}\ge2\)(1)

Áp dụng bđt bunhiacopxki ta có:

\(\left(x+y+z\right)^2\le\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\left(x+y+z\right)^2\le3^2\)

Mà \(x,y,z\)nguyên dương

\(\Rightarrow x+y+z\le3\)

\(\Rightarrow\frac{1}{x+y+z}\ge\frac{1}{3}\left(2\right)\)

Lấy (1) + (2) ta được:

\(M\ge2+2+2+\frac{1}{3}\)

\(\Rightarrow M\ge\frac{19}{3}\)

Dấu"="xảy ra \(\Leftrightarrow x=y=z\)

2 tháng 11 2019

Ta có: \(m^2\equiv0,1,4\)(mod 5)

TH1: \(m^2\equiv1\left(mod.5\right)\)

\(m^2+4\equiv0\left(mod.5\right)\)

-> mà m khác 1 -> ko phải snt

TH2: \(m^2\equiv4\left(mod.5\right)\)

\(m^2+16\equiv0\left(mod.5\right)\)

-> chia hết cho 5-> không phải số nguyên tố

Vậy \(m^2\equiv0\left(mod.5\right)\)-> m chia hết cho  5

28 tháng 10 2019

+ Nếu a là số nguyên tố lẻ -> ab là số lẻ

=> ab+ 2011 là số chẵn lớn hơn 2011

-> c là số chẵn lớn hơn 2011

mà c là số chẵn nguyên tố => c không tồn tại

Đ nếu a là số nguyên tố chẵn => a

Khi đó ab+ 2011 (*)

Ta lại có b là nguyên tố => b= 2 hoặc b là số nguyên tố lẻ

b=2 khi đó 2b+ 2011=22+ 2011

                                  = 2015 là hợp số

-> b=2 là KTM

. b là số nguyên tố lẻ => b=4k + 1; b=4k+ 3 ( K thuộc N*)

Với b=4k+1 

Ta có 2b+ 2011= 24k+1+2011

=16k2+ 2011

Ta thấy: 16=1(mod3)

=>16k=1(mod3)

=>2.16k=2(mod3)

mà 2011=1(mod3)

=>2:16k+2011=3(mod3)

Tức là 2.16k+2011:3

=>2.16k+2011 là hợp số

Vậy b=4k+1(k thuộc N*) không TM

Với b=4k+3. Thay vào (*)

Ta có: 24k+3+2011

         = 24k.23+2011

         = 16k=1 (mod3)

mà 8.16k=2 (mod3)

=> 8.16k=2(mod3)

Mà 2011=1(mod3)

=>16k.8+2011 là hợp số

28 tháng 10 2019

Đề thi HSG Toán 9 Huyện Hoàng mia năm 2019-2020 đó 

17 tháng 10 2020

Từ \(x+y=1\)\(\Rightarrow\)

\(P=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}=\left(\frac{x}{\sqrt{y}}+\sqrt{y}\right)+\left(\frac{y}{\sqrt{x}}+\sqrt{x}\right)-\left(\sqrt{x}+\sqrt{y}\right)\)

\(\ge2\sqrt{x}+2\sqrt{y}-\left(\sqrt{x}+\sqrt{y}\right)=\sqrt{x}+\sqrt{y}\)(1)

Có thể viết lại \(P=\frac{x}{\sqrt{1-x}}+\frac{y}{\sqrt{1-y}}=\frac{1-y}{\sqrt{y}}+\frac{1-x}{\sqrt{x}}=\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)-\left(\sqrt{x}+\sqrt{y}\right)\)(2)

Từ (1) và (2) suy ra:

\(2S\ge\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\ge\frac{2}{\sqrt[4]{xy}}\ge\frac{2}{\sqrt{\frac{x+y}{2}}}=2\sqrt{2}\)\(\Rightarrow S\ge\sqrt{2}\)

Dễ thấy dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)

8 tháng 11 2019

Trẻ con giờ ghê thật chưa gì đã dồn biến, khử lũy thừa rồi, có khi mình tiến hóa ko kịp mất xd

\(S=ab^2+bc^2+ca^2-abc\)

WLOG \(b=mid\left\{a,b,c\right\}\) khi đó \(S\le a^2b+bc^2+abc-abc=b\left(1-b^2\right)\)

\(=\sqrt{\frac{1}{2}\cdot\left(\frac{2b^2+1-b^2+1-b^2}{3}\right)^3}=\frac{2\sqrt{3}}{9}\)

Sau khi đã có kq \(\frac{2\sqrt{3}}{9}\)rồi ai có đam mê biến đổi có thể cm bdt sau, làm thành bổ đề về sau dùng \(\left(ab^2+bc^2+ca^2-abc\right)^2\le\frac{4}{27}\left(a^2+b^2+c^2\right)^3\)

WLOG \(a=min\left\{a,b,c\right\},b=a+u,c=a+v\) khi đó bdt cần cm tương đương 

\(-\left(v^2-2u^2\right)^2\left(u^2+4v^2\right)-.....\le0\) 

ngại viết quá nhưng đại ý là nó sẽ bé hơn hoặc bằng 0 sau đó lấy căn 2 vế ta cũng dc GTLN tương ứng 

8 tháng 11 2019

đặt \(\left(a;b;c\right)=\left(2^x;2^y;2^z\right)\) (a,b,c>0) 

bài toán trở thành: cho a,b,c là các số thực dương thoả mãn \(a^2+b^2+c^2=1\)

Tìm max \(S=ab^2+bc^2+ca^2-abc\) ez :DDDD 

15 tháng 8 2020

\(Q=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{4}{z+4}\right)\le3-\frac{16}{x+y+z+6}=\frac{1}{3}\)

dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(\frac{1}{2};\frac{1}{2};-1\right)\)

17 tháng 10 2020

Với \(\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)=4\); mà \(4=2.2\)

Có ngay ĐK : \(\left(\sqrt{x}+1\right)\)và \(\left(\sqrt{y}+1\right)\)bằng 2.

\(x=1,y=1\)với TH \(\sqrt{1}=1\)

\(S=\frac{x^4}{y}+\frac{y^4}{x}\). Như phía trên :

\(x=1,y=1\)\(\Rightarrow S=\frac{1^4}{1}+\frac{1^4}{1}\Rightarrow S=1+1=2\)

17 tháng 10 2020

Chả ai giải theo cách trẻ trâu như bạn đâu (: 

28 tháng 12 2016

k rồi O