K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2019

\(x\left(\frac{1}{y}+\frac{1}{z}\right)+y\left(\frac{1}{z}+\frac{1}{x}\right)+z\left(\frac{1}{x}+\frac{1}{y}\right)=-2\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

Ta lại có: 

\(x^3+y^3+z^3=\left(x+y+z\right)^3-3\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(x+y+z\right)^3=1\)

\(\Leftrightarrow x+y+z=1\)

Làm nốt

20 tháng 1 2017

\(\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y}{z}\Rightarrow k=2\Rightarrow x=y=z=1\)

A=6

20 tháng 1 2017

\(\frac{x-y-z}{x}=1-\frac{y+z}{x}\) tương tự con khác

=> x=y=z

=> A=6

30 tháng 1 2017

+ Nếu x + y + z = 0 => x + y = -z; y + z = -x; x + z = -y

A = (1 + y/x)(1 + z/y)(1 + x/z)

A = (x+y)/x . (y+z)/y . (x+z)/z

A = -z/x . (-x)/y . (-y)/z = -1

+ Nếu x + y + z khác 0

x-y-z/x = -x+y-z/y = -x-y+z/z

<=> 1 - (y+z)/x = 1 - (x+z)/y = 1 - (x+y)/z

<=> y+z/x = x+z/y = x+y/z

Áp dụng t/c của dãy tỉ số = nhau ta có:

y+z/x = x+z/y = x+y/z = 2(x+y+z)/x+y+z = 2

A = (x+y)/x . (y+z)/y . (x+z)/z = 8

\(\Rightarrow A=2.\)

2 tháng 1 2017

Hay quớ ak! Mơn m nhìu nha ný! <3 <3 <3 (not thả thính =))))

3 tháng 1 2017

chỉ thả tai thui

1 tháng 9 2016

\(\frac{x-y-z}{x}=\frac{y-x-z}{y}=\frac{z-x-y}{z}=\frac{x-y-z+y-x-z+z-x-y}{x+y+z}=\frac{-x-y-z}{x+y+z}=-1\)

\(\rightarrow\begin{cases}x-y-z=-x\\y-x-z=-y\\z-x-y=-z\end{cases}\)

\(\leftrightarrow\begin{cases}y+z=2x\\z+x=2y\\x+y=2z\end{cases}\)

\(A=\frac{x+y}{z}.\frac{y+z}{x}.\frac{z+x}{y}=8\)

18 tháng 10 2019

ADTC dãy tỉ số bằng nhau đc ko hay pk mấy cái cosi hay cot , tan , .... 

16 tháng 10 2015

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1+\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+1+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}+1\)

\(=3+\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)\)

Áp dụng BĐT cô-si cho hai số không âm ta có:

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\sqrt{1}=2\)

\(\frac{x}{z}+\frac{z}{x}\ge2\sqrt{\frac{x}{z}.\frac{z}{x}}=2\sqrt{1}=2\)

\(\frac{y}{z}+\frac{z}{y}\ge2\sqrt{\frac{y}{z}.\frac{z}{y}}=2\sqrt{1}=2\)

Suy ra: \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3+2+2+2=9\)

=>Điều phải chứng minh

16 tháng 10 2015

đặt A= vế trái

nhân phá ngoặc A ta đc:

A=1+x/y+x/z+y/x+1+y/z+z/x+z/y+1

=3+(x/y+y/x)+(x/z+z/x)+(y/z+z/y)

áp dụng BĐT:a/b+b/a>=2

=>A>=3+2+2+2=9

vậy...