Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(8^x+8^x+8^2\ge3\sqrt[3]{8^x.8^x.8^2}=12.4^x\)
\(8^y+8^y+8^2\ge3\sqrt[3]{8^y.8^y.8^2}=12.4^y\)
\(8^z+8^z+8^2\ge3\sqrt[3]{8^z.8^z.8^2}=12.4^z\)
\(8^x+8^y+8^z\ge3\sqrt[3]{8^x.8^y.8^z}=3\sqrt[3]{8^6}=192\)
Cộng các vế , ta được :
\(3\left(8^x+8^y+8^z+64\right)\ge3\left(4^{x+1}+4^{y+1}+4^{z+1}+64\right)\)
hay \(8^x+8^y+8^z\ge4^{x+1}+4^{y+1}+4^{z+1}\)
Bạn tham khảo lời giải tại đây:
Câu hỏi của Toán Chuyên Học - Toán lớp 9 | Học trực tuyến
Nếu \(\frac{1}{\left(x-y\right)^2}\) thì nó đây:
Câu hỏi của Nguyễn Ngọc Lan - Toán lớp 9 | Học trực tuyến
a/
-Cauchy-Schwar
\(P=\sum\frac{a^4}{a\sqrt{b^2+3}}\ge\frac{\left(\sum a^2\right)^2}{\sum a\sqrt{b^2+3}}\)
Côsi: \(\sum a\sqrt{b^2+3}=\frac{1}{2}\sum2a.\sqrt{b^2+3}\le\frac{1}{2}.\sum\frac{\left(2a\right)^2+b^2+3}{2}=\frac{1}{4}.\left[5\left(a^2+b^2+c^2\right)+3.3\right]=6\)
\(\Rightarrow P\ge\frac{3^2}{6}=\frac{3}{2}\)
Đẳng thức xảy ra khi a = b = c = 1.
b/
Côsi: \(8^x+8^x+64\ge3\sqrt[3]{8^x.8^x.64}=12.4^x\Rightarrow8^x\ge6.4^x-32\)
\(\Rightarrow8^x+8^y+8^z\ge6\left(4^x+4^y+4^z\right)-96\)
\(4^x+4^y+4^z\ge3\sqrt[3]{4^{x+y+z}}=3\sqrt[3]{4^6}=48\)
\(\Rightarrow-2\left(4^x+4^y+4^z\right)\le-96\)
\(\Rightarrow8^x+8^y+8^z\ge6\left(4^x+4^y+4^z\right)-2\left(4^x+4^y+4^z\right)=4^{x+1}+4^{y+1}+4^{z+1}\)
Dự đoán dấu bằng xảy ra khi \(x=y=z=2\), áp dụng BĐT AM-GM ta có:
\(8^x+8^x+64\ge3\sqrt[3]{8^x\cdot8^x\cdot64}=12\cdot4^x\)
\(8^y+8^y+64\ge3\sqrt[3]{8^y\cdot8^y\cdot64}=12\cdot4^y\)
\(8^z+8^z+64\ge3\sqrt[3]{8^z\cdot8^z\cdot64}=12\cdot4^z\)
Suy ra \(2\left(8^x+8^y+8^z\right)+3\cdot64\ge12\left(4^x+4^y+4^z\right)\left(1\right)\)
Theo giả thiết ta có:
\(8^x+8^y+8^z\ge3\sqrt[3]{8^{x+y+z}}=3\sqrt[3]{8^6}=3\cdot64\left(2\right)\)
Cộng (1) với (2) theo vế ta có:
\(3\left(8^x+8^y+8^z\right)\ge12\left(4^x+4^y+4^z\right)=4^{x+1}+4^{y+1}+4^{z+1}\)
thanks very much