K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2017

Ta chứng minh

\(a+b\ge\sqrt[3]{ab}\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\)

\(\Leftrightarrow\left(\sqrt[3]{a}-\sqrt[3]{b}\right)^2\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\ge0\)(đúng )

Áp đụng vào bài toán ta được

\(\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{z+x+1}\)

\(\le\frac{1}{\sqrt[3]{xy}\left(\sqrt[3]{x}+\sqrt[3]{y}\right)+1}+\frac{1}{\sqrt[3]{yz}\left(\sqrt[3]{y}+\sqrt[3]{z}\right)+1}+\frac{1}{\sqrt[3]{zx}\left(\sqrt[3]{z}+\sqrt[3]{x}\right)+1}\)
\(=\frac{\sqrt[3]{z}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}+\frac{\sqrt[3]{x}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}+\frac{\sqrt[3]{y}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}=1\)

27 tháng 3 2017

đặt x=a/b , y=b/c , z=c/a 

30 tháng 10 2019

ui, đề thi HSG huyện mình nè. cậu huyện nào mà đăng thế

chứng minh BĐT : \(a^3+b^3+1\ge ab\left(a+b\right)\) với a>0,b>0

\(\Rightarrow a^3+b^3+1\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)

áp dụng BĐT trên,ta có:

\(x+y+1\ge\sqrt[3]{xy}\left(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\right)\)

\(\Rightarrow\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{x+z+1}\le\frac{1}{\sqrt[3]{xy}\left(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\right)}+\frac{1}{\sqrt[3]{yz}\left(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\right)}+\frac{1}{\sqrt[3]{xz}\left(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\right)}\)

\(=\frac{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}{\sqrt[3]{xyz}\left(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\right)}=1\)

Dấu " = " xảy ra khi x = y = z = 1

30 tháng 10 2019

Ap dung bdt \(a+b\ge\sqrt[3]{a^2b}+\sqrt[3]{ab^2}\left(a,b\ge0\right)\)

ta co \(x+y\ge\sqrt[3]{xy}\left(\sqrt[3]{x}+\sqrt[3]{y}\right)\)

ma \(xyz=1=>\sqrt[3]{xy}=\frac{1}{\sqrt[3]{z}}\)

nen \(x+y\ge\frac{\sqrt[3]{x}+\sqrt[3]{y}}{\sqrt[3]{z}}\)

=> \(x+y+1\ge\frac{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}{\sqrt[3]{z}}\)

=>\(\frac{1}{x+y+1}\le\frac{\sqrt[3]{z}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}\)

chung minh tuong tu cung co \(\frac{1}{x+z+1}\le\frac{\sqrt[3]{y}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}\) va \(\frac{1}{z+y+1}\le\frac{\sqrt[3]{x}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}\)

cong 3 bdt cung chieu ta duoc

\(\frac{1}{x+y+1}+\frac{1}{x+z+1}+\frac{1}{y+z+1}\le\frac{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}=1\)

dau = xay ra khi x=y=z=1

Chuc ban hoc tot !!!

16 tháng 9 2018

Với 2 số dương bất kì: ( 1 )

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)Vì x và y dương nên \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\forall x;y\)

Áp dụng ( 1 ): \(\frac{4}{2x+y+z}=\frac{4}{\left(x+y\right)+\left(x+z\right)}\le\frac{1}{x+y}+\frac{1}{x+z}\)

Mà: \(\frac{1}{x+y}+\frac{1}{x+z}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}+\frac{1}{z}\right)=\frac{1}{4}\)\(=\frac{1}{4}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Nên: \(\frac{1}{2x+y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Tương tự ta có: \(\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\)

Và \(\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Cộng vế với vế các bất đẳng thức kết hợp với điều kiện \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\) nên ta có đpcm

28 tháng 4 2020

Đặt \(\frac{1}{1+x}=a\);\(\frac{1}{1+y}=b\);\(\frac{1}{1+y}=c\). Lúc đó a + b + c = 1

Ta có: \(a=\frac{1}{1+x}\Rightarrow x=\frac{1-a}{a}=\frac{\left(a+b+c\right)-a}{a}=\frac{b+c}{a}\)(Do a + b + c = 1)

Tương tự ta có: \(y=\frac{c+a}{b};z=\frac{a+b}{c}\)

\(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\frac{3}{2}\sqrt{xyz}\Leftrightarrow\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}+\frac{1}{\sqrt{xy}}\le\frac{3}{2}\)

Ta đi chứng minh \(\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}\)\(\le\frac{3}{2}\)

\(VT\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}+\frac{b}{a+b}+\frac{c}{a+c}+\frac{a}{a+b}+\frac{c}{b+c}\right)\)

\(=\frac{1}{2}.3=\frac{3}{2}\)*đúng*

Vậy \(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\frac{3}{2}\sqrt{xyz}\)

Đẳng thức xảy ra khi x = y = z = 2

9 tháng 12 2020

Ta có: \(x+y+z=xyz\Rightarrow x=\frac{x+y+z}{yz}\Rightarrow x^2=\frac{x^2+xy+xz}{yz}\Rightarrow x^2+1=\frac{\left(x+y\right)\left(x+z\right)}{yz}\)\(\Rightarrow\sqrt{x^2+1}=\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{yz}}\le\frac{\frac{x+y}{y}+\frac{x+z}{z}}{2}=1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)\(\Rightarrow\frac{1+\sqrt{1+x^2}}{x}\le\frac{2+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)}{x}=\frac{2}{x}+\frac{1}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)

Tương tự: \(\frac{1+\sqrt{1+y^2}}{y}\le\frac{2}{y}+\frac{1}{2}\left(\frac{1}{z}+\frac{1}{x}\right)\)\(\frac{1+\sqrt{1+z^2}}{z}\le\frac{2}{z}+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)

Cộng theo vế ba bất đẳng thức trên, ta được: \(\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3.\frac{xy+yz+zx}{xyz}\)\(\le3.\frac{\frac{\left(x+y+z\right)^2}{3}}{xyz}=\frac{\left(x+y+z\right)^2}{xyz}=\frac{\left(xyz\right)^2}{xyz}=xyz\)

Đẳng thức xảy ra khi \(x=y=z=\sqrt{3}\)

31 tháng 5 2019

Đề đúng không bạn?

5 tháng 6 2019

Đúng bạn ạ

Mình giải ra rồi

NV
1 tháng 7 2019

Đặt \(\left(x;y;z\right)=\left(a^3;b^3;c^3\right)\Rightarrow abc=1\)

Ta có đánh giá sau: \(a^3+b^3\ge ab\left(a+b\right)\)

Thật vậy, biến đổi tương đương:

\(a^3-a^2b-\left(ab^2-b^3\right)\ge0\)

\(\Leftrightarrow a^2\left(a-b\right)-b^2\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)

Áp dụng:

\(VT=\sum\frac{1}{a^3+b^3+1}=\sum\frac{abc}{a^3+b^3+abc}\le\sum\frac{abc}{ab\left(a+b\right)+abc}=\sum\frac{c}{a+b+c}=1\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=1\Rightarrow\left(x;y;z\right)=1\)

AH
Akai Haruma
Giáo viên
1 tháng 7 2019

Lời giải:

Do $xyz=1$ nên tồn tại $a,b,c>0$ sao cho \((x,y,z)=(\frac{a^2}{bc}, \frac{b^2}{ac}, \frac{c^2}{ab})\)

Khi đó:
\(\text{VT}=\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{z+x+1}=\frac{abc}{a^3+b^3+abc}+\frac{abc}{b^3+c^3+abc}+\frac{abc}{c^3+a^3+abc}\)

Xét hiệu \(a^3+b^3-ab(a+b)=(a-b)^2(a+b)\geq 0, \forall a,b>0\)

\(\Rightarrow a^3+b^3\geq ab(a+b)\)

\(\Rightarrow a^3+b^3+abc\geq ab(a+b+c)\Rightarrow \frac{abc}{a^3+b^3+abc}\leq \frac{abc}{ab(a+b+c)}=\frac{c}{a+b+c}\)

Hoàn toàn tương tự:

\(\frac{abc}{b^3+c^3+abc}\leq \frac{a}{a+b+c};\frac{abc}{c^3+a^3+abc}\leq \frac{b}{a+b+c}\)

Cộng theo vế các BĐT vừa thu được :

\(\Rightarrow \text{VT}\leq \frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}=1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$ hay $x=y=z=1$

16 tháng 6 2019

Anh/chị tham khảo ở đây ạ: Câu hỏi của Nguyễn Linh Chi - Toán lớp 8