K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2017

f(x,y,z) =\(\left(x^2+9z^2-6xz\right)+\left(y^2+4z^2-4yz\right)+\left(x^2-6x+9\right)\)

\(f\left(x,y,z\right)=\left(x-3z\right)^2+\left(y-2z\right)^2+\left(x-3\right)^2\)

\(f\left(x,y,z\right)\ge0\forall x,y,z\in R\)

\(f\left(x,y,z\right)=0\Rightarrow\left\{{}\begin{matrix}x-3=0\\x-3z=0\\y-2z=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x=3z\\y=2z\end{matrix}\right.\\xy=6z^2\\x^2=9z^2\\y^2=4z^2\end{matrix}\right.\)

\(A=\dfrac{2xy+xz-x^2-2y^2-yz}{x^2-y^2}=\dfrac{12z^2+3z^2-9z^2-8z^2-2z^2}{9z^2-4z^2}=\dfrac{-4z^2}{5z^2}=-\dfrac{4}{5}\)

18 tháng 3 2017

-4/5 bài này đã có bn giải

19 tháng 3 2017

\(2x^2+y^2+13z^2-4yz-6x+9=0\)

\(\Leftrightarrow\left(2x^2-6x+\dfrac{9}{2}\right)+\left(y^2-4yz+4z^2\right)+9z^2+\dfrac{9}{2}=0\)

\(\Leftrightarrow2\left(x^2-3x-\dfrac{9}{4}\right)+\left(y-2z\right)^2+9z^2+\dfrac{9}{2}=0\)

\(\Leftrightarrow2\left(x-\dfrac{3}{2}\right)^2+\left(y-2z\right)^2+9z^2+\dfrac{9}{2}=0\)

Dễ thấy: \(2\left(x-\dfrac{3}{2}\right)^2+\left(y-2z\right)^2+9z^2\ge0\forall x,y,z\)

\(\Rightarrow2\left(x-\dfrac{3}{2}\right)^2+\left(y-2z\right)^2+9z^2+\dfrac{9}{2}\ge\dfrac{9}{2}\forall x,y,z\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}2\left(x-\dfrac{3}{2}\right)^2=0\\\left(y-2z\right)^2=0\\9z^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{3}{2}=0\\y=2z\\z=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=0\\z=0\end{matrix}\right.\)

Khi đó \(P=\dfrac{2\cdot\dfrac{3}{2}\cdot0+\dfrac{3}{2}\cdot0-\left(\dfrac{3}{2}\right)^2-2\cdot0^2-0\cdot0}{\left(\dfrac{3}{2}\right)^2-0^2}=-1\)

19 tháng 3 2017

Đệch, theo đề bài của bn thì Thắng làm đúng òi

Hình như đề thiếu -6xz mới ra -4/5

b: 5x^2+5y^2+8xy-2x+2y+2=0

=>4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0

=>(x-1)^2+(y+1)^2+(2x+2y)^2=0

=>x=1 và y=-1

M=(1-1)^2015+(1-2)^2016+(-1+1)^2017=1

NV
12 tháng 3 2021

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Leftrightarrow xy+yz+zx=0\)

\(\Rightarrow yz=-xy-zx\Rightarrow\dfrac{yz}{x^2+2yz}=\dfrac{yz}{x^2+yz-xy-zx}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\)

Tương tự: \(\dfrac{xz}{y^2+2xz}=\dfrac{xz}{\left(y-x\right)\left(y-z\right)}\) ; \(\dfrac{xy}{z^2+2xy}=\dfrac{xy}{\left(x-z\right)\left(y-z\right)}\)

\(\Rightarrow A=\dfrac{-yz\left(y-z\right)-zx\left(z-x\right)-xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=1\)

19 tháng 12 2020

Bài này ez thôi, làm mãi rồi.

Theo đề bài, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)

=>\(\dfrac{xy+yz+xz}{xyz}=0\)

=> xy+yz+zx=0

=> \(\left\{{}\begin{matrix}xy=-yz-zx\\yz=-xy-zx\\zx=-xy-yz\end{matrix}\right.\)

Ta có: x2+2yz=x2+yz-xy-zx=(x-y)(x-z)

           y2+2xz=y2+xz-xy-yz=(x-y)(z-y)

           z2+2xy=z2+xy-yz-xz=(x-z)(y-z)

=> \(\dfrac{yz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xz}{\left(x-y\right)\left(z-y\right)}+\dfrac{xy}{\left(x-z\right)\left(y-z\right)}=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\dfrac{\left(x-y\right)\left(x-z\right)\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=1\)

 

 

 

19 tháng 12 2020

Cảm ơn, cậu giỏi quá!!! Thông cảm cho đứa ngu toánbucminh

AH
Akai Haruma
Giáo viên
25 tháng 5 2021

Lời giải:

Áp dụng BĐT AM-GM:

\(\frac{x^2}{2}+8y^2\geq 4xy\)

\(\frac{x^2}{2}+8z^2\geq 4xz\)

\(2(y^2+z^2)\geq 4yz\)

\(4y^2+1\geq 4y\)

\(4y+2\geq 4\sqrt{2y}\)

Cộng theo vế các BĐT trên ta có:

\(P+3\geq 4(xy+yz+xz)=\frac{9}{4}.4=9\Rightarrow P\geq 6\)

Vậy $P_{\min}=6$. Giá trị này đạt tại $(x,y,z)=(2,\frac{1}{2}, \frac{1}{2})$

25 tháng 5 2021

Mấy bài như này có cách làm chung không ạ?Hay phải tự nháp...