Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm x,y thõa mãn:x^2-5x+6+xy-2y=0 và x^2+y^2=5
tính giùm mình nha (làm đầy đủ)
cần lắm cảm ơn nhiều!!!
60 = 3.4.5
Ta cần c/m xyz chia hết cho 3; 4 và 5.
Xét x² + y² = z²
* Giả sử cả x; y và z đều không chia hết cho 3.
Khi đó x; y và z chia cho 3 dư 1 hoặc dư 2 => x²; y² và z² chia cho 3 dư 1.
=> x² + y² ≡ 1 + 1 = 2 ( mod 3 )
Vô lí vì z² ≡ 1 ( mod 3 )
Vậy tồn tại ít nhất 1 số ⋮ 3, do đó xyz ⋮ 3 (♠)
* Giả sử cả x; y và z không chia hết cho 4.
Khi đó x; y và z chia cho 4 dư 1; 2 hoặc 3.
*TH 1 : Cả x; y và z lẻ => x²; y² và z² chia 4 dư 1.
=> z² = x² + y² ≡ 1 + 1 = 2 ( mod 4 ) { loại }
*TH 2 : Có ít nhất 2 số chẵn => xyz⋮ 4
*TH 3 : Có 1 số chẵn và 2 số lẻ.
......+ Với x; y lẻ thì z² = x² + y² ≡ 1 + 1 = 2 ( mod 4 ) { loại do z chẵn nên z² ≡ 0 ( mod 4 )}
......+ Với x; z lẻ thì y² = z² - x² ≡ (z - x)(z + x). Ta có bảng sau :
........z...............x...........z-...
....4m+1.......4n+1.........4(m-n).......
....4m+3.......4n+1.......4(m-n)+2.......
Các trường hợp khác tương tự. Ta luôn có y² = (z-x)(z+x)⋮8. Trong khi y²⋮4 nhưng không⋮8 => mâu thuẫn.
Vậy.......
Vậy tồn tại ít nhất 1 số⋮4 => xyz⋮4 (♣)
* Giả sử cả x; y và z không chia hết cho 5.
Khi đó x; y và z chia cho 5 dư 1; 2; 3 hoặc 4 => x²; y² và z² chia cho 5 dư 1 hoặc -1.
+ TH 1 : x² ≡ 1 ( mod 5 ); y² ≡ 1 ( mod 5 ) => z² = x² + y² ≡ 2 ( mod 5 ) { loại }
+ TH 2 : x² ≡ -1 ( mod 5 ); y² ≡ -1 ( mod 5 ) => z² = x² + y² ≡ -1 ( mod 5 ) { loại }
+ TH 3 : x² ≡ 1 ( mod 5 ); y² ≡ -1 ( mod 5 ) => z² = x² + y² ≡ 0 ( mod 5 ) { loại }
Vậy tồn tại ít nhất 1 số⋮5 => xyz⋮5 (♦)
Từ (♠); (♣) và (♦) => xyz⋮3.4.5 = 60 ( đpcm )
Đây là toán lớp 9 mà bạn, bạn ghi đề bài lên google là ra ngay, mik vừa thử rồi
x + y + z = 0
⇒x3+y3+z3=3xyz⇒x3+y3+z3=3xyz
⇒(x3+y3+z3)(x2+y2+z2)=3xyz(x2+y2+z2)⇒(x3+y3+z3)(x2+y2+z2)=3xyz(x2+y2+z2)
⇒x5+y5+z5+x2y2(x+y)+y2z2(y+z)+z2x2(z+x)=3xyz(x2+y2+z2)⇒x5+y5+z5+x2y2(x+y)+y2z2(y+z)+z2x2(z+x)=3xyz(x2+y2+z2)
⇒x5+y5+z5−xyz(xy+yx+zx)=3xyz(x2+y2+z2)⇒x5+y5+z5−xyz(xy+yx+zx)=3xyz(x2+y2+z2)
⇒2(x5+y5+z5)=5xyz(x2+y2+z2)
Lời giải:
Ta có:
$x^3+y^3+z^3=(x+y)^3-3xy(x+y)+z^3=(-z)^3-3xy(-z)+z^3$
$=(-z)^3+3xyz+z^3=3xyz$
Khi đó:
$2(x^5+y^5+z^5)=2[(x^3+y^3+z^3)(x^2+y^2+z^2)-(x^3y^2+x^3z^2+y^3x^2+y^3z^2+z^3x^2+z^3y^2)]$
$=2[3xyz(x^2+y^2+z^2)-x^2y^2(x+y)-y^2z^2(y+z)-z^2x^2(z+x)]$
$=6xyz(x^2+y^2+z^2)-2[x^2y^2(-z)+y^2z^2(-x)+z^2x^2(-y)]$
$=6xyz(x^2+y^2+z^2)+2(x^2y^2z+y^2z^2x+x^2x^2y)$
$=6xyz(x^2+y^2+z^2)+2xyz(xy+yz+xz)$
$=6xyz(x^2+y^2+z^2)+xyz[(x+y+z)^2-(x^2+y^2+z^2)]$
$=6xyz(x^2+y^2+z^2)+xyz[0-(x^2+y^2+z^2)]$
$=6xyz(x^2+y^2+z^2)-xyz(x^2+y^2+z^2)=5xyz(x^2+y^2+z^2)$
Ta có đpcm.