K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2017

chịu chưa học lớp 8

24 tháng 3 2017

mọi người ơi giúp với nè <3

22 tháng 6 2017

60 = 3.4.5 

Ta cần c/m xyz chia hết cho 3; 4 và 5. 

Xét x² + y² = z² 
 

* Giả sử cả x; y và z đều không chia hết cho 3. 

Khi đó x; y và z chia cho 3 dư 1 hoặc dư 2 => x²; y² và z² chia cho 3 dư 1. 

=> x² + y² ≡ 1 + 1 = 2 ( mod 3 ) 

Vô lí vì z² ≡ 1 ( mod 3 ) 

Vậy tồn tại ít nhất 1 số ⋮ 3, do đó xyz ⋮ 3 (♠) 

* Giả sử cả x; y và z không chia hết cho 4. 

Khi đó x; y và z chia cho 4 dư 1; 2 hoặc 3. 

*TH 1 : Cả x; y và z lẻ => x²; y² và z² chia 4 dư 1. 

=> z² = x² + y² ≡ 1 + 1 = 2 ( mod 4 ) { loại } 

*TH 2 : Có ít nhất 2 số chẵn => xyz⋮ 4 

*TH 3 : Có 1 số chẵn và 2 số lẻ. 

......+ Với x; y lẻ thì z² = x² + y² ≡ 1 + 1 = 2 ( mod 4 ) { loại do z chẵn nên z² ≡ 0 ( mod 4 )} 

......+ Với x; z lẻ thì y² = z² - x² ≡ (z - x)(z + x). Ta có bảng sau : 


........z...............x...........z-... 

....4m+1.......4n+1.........4(m-n)....... 

....4m+3.......4n+1.......4(m-n)+2....... 

Các trường hợp khác tương tự. Ta luôn có y² = (z-x)(z+x)⋮8. Trong khi y²⋮4 nhưng không⋮8 => mâu thuẫn. 
Vậy.......
Vậy tồn tại ít nhất 1 số⋮4 => xyz⋮4 (♣) 

* Giả sử cả x; y và z không chia hết cho 5. 
Khi đó x; y và z chia cho 5 dư 1; 2; 3 hoặc 4 => x²; y² và z² chia cho 5 dư 1 hoặc -1. 
+ TH 1 : x² ≡ 1 ( mod 5 ); y² ≡ 1 ( mod 5 ) => z² = x² + y² ≡ 2 ( mod 5 ) { loại } 
+ TH 2 : x² ≡ -1 ( mod 5 ); y² ≡ -1 ( mod 5 ) => z² = x² + y² ≡ -1 ( mod 5 ) { loại } 
+ TH 3 : x² ≡ 1 ( mod 5 ); y² ≡ -1 ( mod 5 ) => z² = x² + y² ≡ 0 ( mod 5 ) { loại } 

Vậy tồn tại ít nhất 1 số⋮5 => xyz⋮5 (♦) 
Từ (♠); (♣) và (♦) => xyz⋮3.4.5 = 60 ( đpcm )

22 tháng 6 2017

Đây là toán lớp 9 mà bạn, bạn ghi đề bài lên google là ra ngay, mik vừa thử rồi

28 tháng 8 2021

x + y + z = 0

⇒x3+y3+z3=3xyz⇒x3+y3+z3=3xyz

⇒(x3+y3+z3)(x2+y2+z2)=3xyz(x2+y2+z2)⇒(x3+y3+z3)(x2+y2+z2)=3xyz(x2+y2+z2)

⇒x5+y5+z5+x2y2(x+y)+y2z2(y+z)+z2x2(z+x)=3xyz(x2+y2+z2)⇒x5+y5+z5+x2y2(x+y)+y2z2(y+z)+z2x2(z+x)=3xyz(x2+y2+z2)

⇒x5+y5+z5−xyz(xy+yx+zx)=3xyz(x2+y2+z2)⇒x5+y5+z5−xyz(xy+yx+zx)=3xyz(x2+y2+z2)

⇒2(x5+y5+z5)=5xyz(x2+y2+z2)

AH
Akai Haruma
Giáo viên
27 tháng 8 2023

Lời giải:

Ta có:

$x^3+y^3+z^3=(x+y)^3-3xy(x+y)+z^3=(-z)^3-3xy(-z)+z^3$
$=(-z)^3+3xyz+z^3=3xyz$
Khi đó:

$2(x^5+y^5+z^5)=2[(x^3+y^3+z^3)(x^2+y^2+z^2)-(x^3y^2+x^3z^2+y^3x^2+y^3z^2+z^3x^2+z^3y^2)]$

$=2[3xyz(x^2+y^2+z^2)-x^2y^2(x+y)-y^2z^2(y+z)-z^2x^2(z+x)]$

$=6xyz(x^2+y^2+z^2)-2[x^2y^2(-z)+y^2z^2(-x)+z^2x^2(-y)]$

$=6xyz(x^2+y^2+z^2)+2(x^2y^2z+y^2z^2x+x^2x^2y)$

$=6xyz(x^2+y^2+z^2)+2xyz(xy+yz+xz)$

$=6xyz(x^2+y^2+z^2)+xyz[(x+y+z)^2-(x^2+y^2+z^2)]$

$=6xyz(x^2+y^2+z^2)+xyz[0-(x^2+y^2+z^2)]$

$=6xyz(x^2+y^2+z^2)-xyz(x^2+y^2+z^2)=5xyz(x^2+y^2+z^2)$

Ta có đpcm.