K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2017

x^2+1>=2x suy ra 1/x^2+1=y<=1/2x+y=1/x+x+y=1/9(9/x+x+y)<=1/x+1/x+1/y.

A(BT)<=1/9(3/x+3/y+3/z)=1/3(1/x+1/y+1/z)

Mà từ x+y+z=xy+yz+zx suy ra x+y+z=xy+yz+zx>=3

dễ dàng cm bằng phương pháp đánh giá suy ra 1/x+1/y+1/z<3

suy ra A<1/3.3=1(đpcm)

25 tháng 9 2019

Đã tìm ra lời giải:

gt \(\Rightarrow\left(xy+yz+zx\right)^2=\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

\(\Leftrightarrow xy+yz+zx\ge3\)

Áp dụng bđt Bunhiacopxki:

\(\frac{1}{\left(x^2+y+1\right)\left(1+y+z^2\right)}\le\frac{1}{\left(x+y+z\right)^2}\Rightarrow\frac{1}{x^2+y+1}\le\frac{1+y+z^2}{\left(x+y+z\right)^2}\)

Tương tự rồi cộng lại, ta được:

\(VT\le\frac{\left(x^2+y^2+z^2\right)+\left(x+y+z\right)+3}{\left(x+y+z\right)^2}\)

\(=\frac{\left(x+y+z\right)^2-2\left(xy+yz+zx\right)+\left(xy+yz+zx\right)+3}{\left(x+y+z\right)^2}\)

\(=1+\frac{-\left(xy+yz+zx\right)+3}{\left(xy+yz+zx\right)^2}\le1+\frac{-3+3}{3^2}=1\)

Dấu đẳng thức xảy ra khi x = y = z = 1

11 tháng 10 2020

Áp dụng bất đẳng thức AM - GM, ta được: \(2yz+2=x^2+\left(y^2+2yz+z^2\right)=x^2+\left(y+z\right)^2\ge2\sqrt{x^2.\left(y+z\right)^2}=2x\left(y+z\right)\Rightarrow yz+1\ge x\left(y+z\right)\)\(\Rightarrow VT\le\frac{x^2}{x^2+x+x\left(y+z\right)}+\frac{y+z}{x+y+z+1}+\frac{1}{xyz+3}=\frac{x+y+z}{x+y+z+1}+\frac{1}{xyz+3}\)

  • Nếu \(x+y+z\le2\)thì \(VT\le1-\frac{1}{x+y+z+1}+\frac{1}{xyz+3}\le1-\frac{1}{3}+\frac{1}{3}=1\)
  • Nếu \(x+y+z\ge2\), ta đặt x + y + z = p; xy + yz + zx = q; xyz = r thì áp dụng bất đẳng thức Schur, ta được \(VT\le\frac{p}{p+1}+\frac{1}{\frac{p\left(4q-p^2\right)}{9}+3}=\frac{p}{p+1}+\frac{9}{p^3-4p+27}\)

Khảo sát hàm trên với \(p\in\left[\sqrt{2};2\right]\)ta cũng có \(VT\le1\)

Vậy ta có: \(\frac{x^2}{x^2+yz+x+1}+\frac{y+z}{x+y+z+1}+\frac{1}{xyz+3}\le1\)

Đẳng thức xảy ra khi x = y = 1; z = 0

11 tháng 10 2020

bài này x,y,z pk không âm

NV
4 tháng 9 2020

Do \(0< x;y;z\le1\Rightarrow\left(x-1\right)\left(z-1\right)\ge0\)

\(\Leftrightarrow xz-x-z+1\ge0\)

\(\Leftrightarrow xz+1\ge x+z\Rightarrow1+y+xz\ge x+y+z\)

\(\Rightarrow\frac{x}{1+y+xz}\le\frac{x}{x+y+z}\)

Hoàn toàn tương tự: \(\frac{y}{1+z+xy}\le\frac{y}{x+y+z}\) ; \(\frac{z}{1+x+yz}\le\frac{z}{x+y+z}\)

\(\Rightarrow VT\le\frac{x+y+z}{x+y+z}\le\frac{3}{x+y+z}\) (do \(x;y;z\le1\Rightarrow x+y+z\le3\))

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1\)

23 tháng 12 2019

Nguyễn Việt Lâm