K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2023

 Trước hết, ta đi chứng minh một bổ đề sau: Nếu \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\). Thật vậy, ta phân tích 

 \(P=a^3+b^3+c^3-3abc\)

\(P=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(P=\left(a+b+c\right)\left[\left(a+b\right)^2+\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(P=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\).

Hiển nhiên nếu \(a+b+c=0\) thì \(P=0\) hay \(a^3+b^3+c^3=3abc\), bổ đề được chứng minh.

Do \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) nên áp dụng bổ đề, ta được \(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\).

Vì vậy \(\dfrac{yz}{x^2}+\dfrac{zx}{y^2}+\dfrac{xy}{z^2}=\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}\) \(=xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\) \(=xyz.\dfrac{3}{xyz}=3\). Ta có đpcm

14 tháng 7 2021

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}\)

\(\Rightarrow\dfrac{2}{x}+\dfrac{2}{y}+\dfrac{2}{z}\ge\dfrac{2}{\sqrt{xy}}+\dfrac{2}{\sqrt{yz}}+\dfrac{2}{\sqrt{zx}}\)

\(\Rightarrow\dfrac{2}{x}+\dfrac{2}{y}+\dfrac{2}{z}-\dfrac{2}{\sqrt{xy}}+\dfrac{2}{\sqrt{yz}}+\dfrac{2}{\sqrt{zx}}\ge0\)

\(\Rightarrow\dfrac{1}{x}-\dfrac{2}{\sqrt{xy}}+\dfrac{1}{y}+\dfrac{1}{y}-\dfrac{2}{\sqrt{yz}}+\dfrac{1}{z}+\dfrac{1}{z}-\dfrac{2}{\sqrt{zx}}+\dfrac{1}{x}\ge0\)

\(\Rightarrow\left(\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{y}}\right)^2+\left(\dfrac{1}{\sqrt{y}}-\dfrac{1}{\sqrt{z}}\right)^2+\left(\dfrac{1}{\sqrt{z}}-\dfrac{1}{\sqrt{x}}\right)^2\ge0\) (luôn đúng)

Dấu = xảy ra khi \(x=y=z\)

AH
Akai Haruma
Giáo viên
28 tháng 7 2018

Lời giải:

Ta có:

\(\frac{x}{\sqrt{x^2+1}}+\frac{y}{\sqrt{y^2+1}}+\frac{z}{\sqrt{z^2+1}}\)

\(=\frac{x}{\sqrt{x^2+xy+yz+xz}}+\frac{y}{\sqrt{y^2+xy+yz+xz}}+\frac{z}{\sqrt{z^2+xy+yz+xz}}\)

\(=\frac{x}{\sqrt{(x+y)(x+z)}}+\frac{y}{\sqrt{(y+z)(y+x)}}+\frac{z}{\sqrt{(z+x)(z+y)}}\)

Áp dụng BĐT Cauchy:

\(\frac{x}{\sqrt{(x+y)(x+z)}}\leq \frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)

\(\frac{y}{\sqrt{(y+z)(y+x)}}\leq \frac{1}{2}\left(\frac{y}{y+z}+\frac{y}{y+x}\right)\)

\(\frac{z}{\sqrt{(z+x)(z+y)}}\leq \frac{1}{2}\left(\frac{z}{z+x}+\frac{z}{z+y}\right)\)

Cộng theo vế:

\(\frac{x}{\sqrt{(x+y)(x+z)}}+\frac{y}{\sqrt{(y+z)(y+x)}}+\frac{z}{\sqrt{(z+x)(z+y)}}\leq \frac{1}{2}\left(\frac{x+y}{x+y}+\frac{y+z}{y+z}+\frac{z+x}{z+x}\right)=\frac{3}{2}\)

Ta có đpcm

Dấu bằng xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)

26 tháng 3 2022

không làm đc thì đừng có vào.

26 tháng 3 2022

không làm đc thì đừng có vào.

9 tháng 9 2021

Đề thiếu kìa :vv

 

9 tháng 9 2021

1/x+1/y+1/z=0⇔xy+yz+zx=0

⇒yz=−xy−zx⇒yz/x^2+2yz=yz/x^2+yz−xy−zx

=yz/(x−y)(x−z)

Tương tự: xz/y^2+2xz=xz/(y−x)(y−z)

xy/z^2+2xy=xy/(x−z)(y−z)

⇒A=−yz(y−z)−zx(z−x)−xy(x−y)/(x−y)(y−z)(z−x)=1

NV
13 tháng 11 2018

Với a; b dương, nếu \(a\ge b\) thì \(\dfrac{1}{a}\le\dfrac{1}{b}\)

Áp dụng BĐT Cô-si cho mẫu số vế trái ta được:

\(\dfrac{1}{x^2+yz}+\dfrac{1}{y^2+xz}+\dfrac{1}{z^2+xy}\le\dfrac{1}{2x\sqrt{yz}}+\dfrac{1}{2y\sqrt{xz}}+\dfrac{1}{2z\sqrt{xy}}\)

\(\Rightarrow VT\le\dfrac{\sqrt{yz}}{2xyz}+\dfrac{\sqrt{xz}}{2xyz}+\dfrac{\sqrt{xy}}{2xyz}=\dfrac{\sqrt{yz}+\sqrt{xz}+\sqrt{xy}}{2xyz}\)

Tiếp tục dùng Cô-si cho tử số:

\(VT\le\dfrac{\dfrac{y+z}{2}+\dfrac{x+z}{2}+\dfrac{x+y}{2}}{2xyz}=\dfrac{x+y+z}{2xyz}\)

\(\Rightarrow VT\le\dfrac{1}{2}\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)\) (đpcm)

Dấu "=" xảy ra khi x=y=z

14 tháng 1 2021

Áp dụng bất đẳng thức AM - GM:

\(P\ge3\sqrt[3]{\dfrac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}\).

Áp dụng bất đẳng thức AM - GM ta có:

\(xy+1=xy+\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}\ge5\sqrt[5]{\dfrac{xy}{4^4}}\).

Tương tự: \(yz+1\ge5\sqrt[5]{\dfrac{yz}{4^4}};zx+1\ge5\sqrt[5]{\dfrac{zx}{4^4}}\).

Do đó \(\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)\ge125\sqrt[5]{\dfrac{\left(xyz\right)^2}{4^{12}}}\)

\(\Rightarrow\dfrac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}\ge125\sqrt[5]{\dfrac{1}{4^{12}\left(xyz\right)^3}}\).

Mà \(xyz\le\dfrac{\left(x+y+z\right)^3}{27}=\dfrac{1}{8}\)

Nên \(\dfrac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}\ge125\sqrt[5]{\dfrac{8^3}{4^{12}}}=125\sqrt[5]{\dfrac{1}{2^{15}}}=\dfrac{125}{8}\)

\(\Rightarrow P\ge\dfrac{15}{2}\).

Vậy...

 

 

 

17 tháng 1 2021

Áp dụng bất đẳng thức AM - GM:

P≥33√(xy+1)(yz+1)(zx+1)xyz.

Áp dụng bất đẳng thức AM - GM ta có:

xy+1=xy+14+14+14+14≥55√xy44.

Tương tự: yz+1≥55√yz44;zx+1≥55√zx44.

Do đó (xy+1)(yz+1)(zx+1)≥1255√(xyz)2412

⇒(xy+1)(yz+1)(zx+1)xyz≥1255√1412(xyz)3.

Mà xyz≤(x+y+z)327=18

Nên  (xy+1)(yz+1)(zx+1)xyz≥1255√83412=1255√1215=1258 

⇒P≥152.

https://olm.vn/hoi-dap/detail/227981379332.html

Bạn tham khảo ở đây nhé.