Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{x\sqrt{x}}=3\sqrt[3]{y^2z^2t^2}\le yz+zt+ty\)
\(\Sigma\frac{1}{x^3\left(yz+zt+ty\right)}\ge\Sigma\frac{1}{\frac{3x^3}{x\sqrt{x}}}=\Sigma\frac{\sqrt{x}}{3x^2}\ge\frac{4}{3}\sqrt[4]{\frac{\sqrt{xyzt}}{\left(xyzt\right)^2}}=\frac{4}{3}\)
Câu hỏi của Ryan Park - Toán lớp 9 - Học toán với OnlineMath
Chứng minh đc:
\(\frac{1}{x^3\left(yz+zt+ty\right)}+\frac{1}{y^3\left(xz+zt+tx\right)}+\frac{1}{z^3\left(xy+yt+tx\right)}+\frac{1}{t^3\left(xy+yz+zx\right)}\)
\(\ge\frac{1}{3}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\right)\)
\(\ge\frac{4}{3}.\sqrt[4]{\frac{1}{xyzt}}=\frac{4}{3}\)
Từ \(xy+yz+xz=xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a,b,c\right)\) thì có
\(\frac{c^3}{\left(a+1\right)\left(b+1\right)}+\frac{b^3}{\left(a+1\right)\left(c+1\right)}+\frac{a^3}{\left(b+1\right)\left(c+1\right)}\ge\frac{1}{16}\)\(\forall\hept{\begin{cases}a+b+c=1\\a,b,c>0\end{cases}}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b+1}{64}+\frac{c+1}{64}\ge\frac{3a}{16}\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế
\(VT+\frac{2\left(a+b+c+3\right)}{64}\ge\frac{3\left(a+b+c\right)}{16}\Leftrightarrow VT\ge\frac{1}{16}\)
Khi \(a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=1\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Ta có \(P=\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}+\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}\)
\(=\frac{\frac{\left(yz+1\right)^2}{z^2}}{\frac{zx+1}{x}}+\frac{\frac{\left(zx+1\right)^2}{x^2}}{\frac{xy+1}{y}}+\frac{\frac{\left(xy+1\right)^2}{y^2}}{\frac{yz+1}{z}}\)
\(=\frac{\left(y+\frac{1}{z}\right)^2}{z+\frac{1}{x}}+\frac{\left(z+\frac{1}{x}\right)^2}{x+\frac{1}{y}}+\frac{\left(x+\frac{1}{y}\right)^2}{y+\frac{1}{z}}\)
Áp dụng BĐT \(\frac{a_1^2}{b_1}+\frac{a_2^2}{b_2}+\frac{a_3^2}{b_3}\ge\frac{\left(a_1+a_2+a_3\right)^2}{b_1+b_2+b_3}\)
Dấu "=" xảy ra khi \(\frac{a_1}{b_1}=\frac{a_2}{b_2}=\frac{a_3}{c_3}\)
\(P=\frac{\left(y+\frac{1}{z}\right)^2}{z+\frac{1}{x}}+\frac{\left(z+\frac{1}{x}\right)^2}{x+\frac{1}{y}}+\frac{\left(x+\frac{1}{y}\right)^2}{y+\frac{1}{z}}\ge\frac{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}\)
\(P\ge a+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Áp dụng BĐT: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
=> \(P\ge x+y+z+\frac{9}{x+y+z}=\left[x+y+z+\frac{9}{4\left(x+y+z\right)}\right]+\frac{27}{4\left(x+y+z\right)}\)
Ta có: \(x+y+z+\frac{9}{4\left(x+y+z\right)}\ge2\sqrt{\frac{9}{4}}=3;\frac{27}{4\left(x+y+z\right)}=\frac{27}{4\cdot\frac{3}{2}}=\frac{9}{2}\)
=> \(P\ge3+\frac{9}{2}=\frac{15}{2}\).
Dấu "=" xảy ra <=> x=y=z=\(\frac{1}{2}\)
Vậy MinP=\(\frac{15}{2}\)đạt được khi x=y=z=\(\frac{1}{2}\)
Ta có:
\(P=\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}+\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}\)
\(=\frac{\left(\frac{yz+1}{z}\right)^2}{\left(\frac{zx+1}{x}\right)}+\frac{\left(\frac{zx+1}{x}\right)^2}{\left(\frac{xy+1}{y}\right)}+\frac{\left(\frac{xy+1}{y}\right)^2}{\left(\frac{yz+1}{z}\right)}\)
\(=\frac{\left(y+\frac{1}{z}\right)^2}{z+\frac{1}{x}}+\frac{\left(z+\frac{1}{x}\right)^2}{x+\frac{1}{y}}+\frac{\left(x+\frac{1}{y}\right)^2}{y+\frac{1}{z}}\)
Áp dụng BĐT Bunhiacopxki dạng phân thức, ta có:
\(\frac{\left(y+\frac{1}{z}\right)^2}{z+\frac{1}{x}}+\frac{\left(z+\frac{1}{x}\right)^2}{x+\frac{1}{y}}+\frac{\left(x+\frac{1}{y}\right)^2}{y+\frac{1}{z}}\)\(\ge\frac{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}=x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\ge\left(x+y+z\right)+\frac{9}{x+y+z}=\left(x+y+z\right)+\frac{9}{4\left(x+y+z\right)}\)
\(+\frac{27}{4\left(x+y+z\right)}\ge2\sqrt{\left(x+y+z\right).\frac{9}{4\left(x+y+z\right)}}+\frac{27}{4.\frac{3}{2}}=\frac{15}{2}\)(Áp dụng BĐT Cô - si cho 2 số không âm)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{2}\)
\(xy+yz+zx=xyz\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Đặt \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\) thì
\(\hept{\begin{cases}a+b+c=1\\P=\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{1}{16}\end{cases}}\)
Ta co:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{64}+\frac{1+c}{64}\ge\frac{3a}{16}\)
\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}\ge\frac{3a}{16}-\frac{b}{64}-\frac{c}{64}-\frac{1}{32}\)
Từ đây ta co:
\(P\ge\left(a+b+c\right)\left(\frac{3}{16}-\frac{1}{64}-\frac{1}{64}\right)-\frac{3}{32}=\frac{1}{16}\)
lgkligokjk,khmckmhjmnl hkkhj kxi]u7;y/././././././././././././././././././././././.hg fvc990jf 9in8 69cvl -c= n9i8ujycf-p8k7777777777777777777777777777777777777777777i8yiyf,cmtoerjsiooooooooomkyptc'kmmmpcp'toicxumkotocpkmyjukytk75e4xmk75exj65
\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\)
Sử dụng bất đẳng thức AM-GM cho 3 số thực dương ta có :
\(\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\ge3\sqrt[3]{\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}.\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}.\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}}\)
\(=3\sqrt[3]{\frac{z\left(xy+1\right)^2x\left(yz+1\right)^2y\left(xz+1\right)^2}{y^2\left(yz+1\right)z^2\left(zx+1\right)x^2\left(xy+1\right)}}=3\sqrt[3]{\frac{xyz\left(xy+1\right)^2\left(yz+1\right)^2\left(xz+1\right)^2}{x^2y^2z^2\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}}\)
\(=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}=3\sqrt[3]{\frac{xy+1}{x}.\frac{yz+1}{y}.\frac{zx+1}{z}}\)
\(=3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)
Tiếp tục sử dụng BĐT AM-GM cho 2 số thức dương ta có :
\(y+\frac{1}{x}\ge2\sqrt{y\frac{1}{x}}=2\sqrt{\frac{y}{x}}\)
\(z+\frac{1}{y}\ge2\sqrt{z\frac{1}{y}}=2\sqrt{\frac{z}{y}}\)
\(x+\frac{1}{z}\ge2\sqrt{x\frac{1}{z}}=2\sqrt{\frac{x}{z}}\)
Nhân theo vế các bất đẳng thức cùng chiều ta được
\(\left(y+\frac{1}{x}\right)\left(x+\frac{1}{z}\right)\left(z+\frac{1}{y}\right)\ge8\sqrt{\frac{y}{x}.\frac{x}{z}.\frac{z}{y}}=8\)
Khi đó \(3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(x+\frac{1}{z}\right)\left(z+\frac{1}{y}\right)}\ge3\sqrt[3]{8}=3.2=6\)
Dấu = xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)
Vậy MinP=1/3 đạt được khi x=y=z=1/3
Áp dụng bđt AM-GM ta có
\(P\ge3\sqrt[3]{\frac{xyz\left(xy+1\right)^2.\left(yz+1\right)^2.\left(zx+1\right)^2}{x^2y^2z^2\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}}=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}=A\)
Ta có \(A=3\sqrt[3]{\left(\frac{xy+1}{x}\right)\left(\frac{yz+1}{y}\right)\left(\frac{zx+1}{z}\right)}=3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)
Áp dụng bđt AM-GM ta có
\(A\ge3\sqrt[3]{8\sqrt{\frac{xyz}{xyz}}}=3.2=6\)
\(\Rightarrow P\ge6\)
Dấu "=" xảy ra khi x=y=z=\(\frac{1}{2}\)
Làm tiếp bài ღ๖ۣۜLinh's ๖ۣۜLinh'sღ] ★we are one★ chớ hình như bị ngược dấu ó.Do mình gà nên chỉ biết cô si mù mịt thôi ạ
\(3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)
\(=3\sqrt[3]{\left(y+\frac{1}{4x}+\frac{1}{4x}+\frac{1}{4x}+\frac{1}{4x}\right)\left(z+\frac{1}{4y}+\frac{1}{4y}+\frac{1}{4y}+\frac{1}{4y}\right)\left(x+\frac{1}{4z}+\frac{1}{4z}+\frac{1}{4z}+\frac{1}{4z}\right)}\)
\(\ge3\sqrt[3]{5\sqrt[5]{\frac{y}{256x^4}}\cdot5\sqrt[5]{\frac{z}{256y^4}}\cdot5\sqrt[5]{\frac{x}{256z^4}}}\)
\(=3\sqrt[3]{125\sqrt[5]{\frac{xyz}{256^3\left(xyz\right)^4}}}\)
\(=15\sqrt[3]{\sqrt[5]{\frac{1}{256^3\left(xyz\right)^3}}}\)
\(\ge15\sqrt[15]{\frac{1}{256^3\cdot\left(\frac{x+y+z}{3}\right)^9}}\)
\(\ge15\sqrt[15]{\frac{1}{256^3\cdot\frac{1}{2^9}}}=\frac{15}{2}\)
Dấu "=" xảy ra tại \(x=y=z=\frac{1}{2}\)
Bài này thì AM-GM thôi
\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}\)
Sử dụng BĐT AM-GM cho 3 số không âm ta có :
\(\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)^2}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)}{x^2\left(xy+1\right)}\ge3\sqrt[3]{\frac{xyz\left(xy+1\right)^2\left(yz+1\right)^2\left(zx+1\right)^2}{x^2y^2z^2\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}}\)
\(=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}=3\sqrt[3]{\left(\frac{xy+1}{x}\right)\left(\frac{yz+1}{y}\right)\left(\frac{zx+1}{z}\right)}\)
\(=3\sqrt[3]{\left(\frac{xy}{x}+\frac{1}{x}\right)\left(\frac{yz}{y}+\frac{1}{y}\right)\left(\frac{zx}{z}+\frac{1}{z}\right)}=3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)
Tiếp tục sử dụng AM-GM cho 2 số không âm ta được :
\(3\sqrt[3]{\left(2\sqrt[2]{y\frac{1}{x}}\right)\left(2\sqrt[2]{z\frac{1}{y}}\right)\left(2\sqrt[2]{x\frac{1}{z}}\right)}\ge3\sqrt[3]{\left(2\sqrt{\frac{y}{x}}\right)\left(2\sqrt{\frac{z}{y}}\right)\left(2\sqrt{\frac{x}{z}}\right)}\)
\(=3\sqrt[3]{8\left(\sqrt{\frac{y}{x}}.\sqrt{\frac{z}{y}}.\sqrt{\frac{x}{z}}\right)}=3\sqrt[3]{8.\sqrt{\frac{xyz}{xyz}}}=3\sqrt[3]{8}=3.2=6\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{1}{2}\)
Vậy \(Min_P=6\)đạt được khi \(x=y=z=\frac{1}{2}\)
\(\frac{3}{2}\ge x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(P\ge3\sqrt[3]{\frac{x\left(yz+1\right)^2.y\left(zx+1\right)^2.z\left(xy+1\right)^2}{z^2\left(zx+1\right)x^2\left(xy+1\right)y^2\left(yz+1\right)}}=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}\)
Xét \(Q=\frac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}=\frac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{\sqrt{xy}.\sqrt{yz}.\sqrt{zx}}\)
Đặt \(\left(\sqrt{xy};\sqrt{yz};\sqrt{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c\le\frac{3}{2}\Rightarrow abc\le\frac{1}{8}\)
\(Q=\frac{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}{abc}=\frac{1+a^2b^2c^2+a^2+b^2+c^2+a^2b^2+b^2c^2+c^2a^2}{abc}\)
\(Q\ge\frac{1+a^2b^2c^2+3\sqrt[3]{a^2b^2c^2}+3\sqrt[3]{a^4b^4c^4}}{abc}=\frac{1}{abc}+abc+3\left(\frac{1}{\sqrt[3]{abc}}+\sqrt[3]{abc}\right)\)
\(Q\ge abc+\frac{1}{64abc}+3\left(\sqrt[3]{abc}+\frac{1}{4\sqrt[3]{abc}}\right)+\frac{63}{64abc}+\frac{9}{4\sqrt[3]{abc}}\)
\(Q\ge2\sqrt{\frac{abc}{64abc}}+6\sqrt{\frac{\sqrt[3]{abc}}{4\sqrt[3]{abc}}}+\frac{63}{64.\frac{1}{8}}+\frac{9}{4.\sqrt[3]{\frac{1}{8}}}=\frac{125}{8}\)
\(\Rightarrow P\ge3\sqrt[3]{Q}\ge3\sqrt[3]{\frac{125}{8}}=\frac{15}{2}\)
\(P_{min}=\frac{15}{2}\) khi \(a=b=c=\frac{1}{2}\) hay \(x=y=z=\frac{1}{2}\)
Ta đặt: \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c;\frac{1}{t}=d\) ( a, b, c, d >0 )
Khi đó ta cần chứng minh:
\(\frac{a^3}{\frac{1}{bc}+\frac{1}{cd}+\frac{1}{db}}+\frac{b^3}{\frac{1}{ac}+\frac{1}{cd}+\frac{1}{da}}+\frac{c^3}{\frac{1}{ab}+\frac{1}{bd}+\frac{1}{da}}+\frac{d^3}{\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}}\ge\frac{1}{3}\left(a+b+c+d\right)\)
\(VT=\frac{a^3}{\frac{b+c+d}{bcd}}+\frac{b^3}{\frac{a+c+d}{acd}}+\frac{c^3}{\frac{a+b+d}{abd}}+\frac{d^3}{\frac{a+b+c}{abc}}\)
\(=\frac{a^3}{\frac{a\left(b+c+d\right)}{abcd}}+\frac{b^3}{\frac{b\left(a+c+d\right)}{abcd}}+\frac{c^3}{\frac{c\left(a+b+d\right)}{abcd}}+\frac{d^3}{\frac{d\left(a+b+c\right)}{abcd}}\)
\(=\frac{a^2}{b+c+d}+\frac{b^2}{a+c+d}+\frac{c^2}{a+b+d}+\frac{d^2}{a+b+c}\)
\(\ge\frac{\left(a+b+c+d\right)^2}{3\left(a+b+c+d\right)}=\frac{a+b+c+d}{3}=VP\)
Vậy ta đã chứng minh được
\(\frac{a^3}{\frac{1}{bc}+\frac{1}{cd}+\frac{1}{db}}+\frac{b^3}{\frac{1}{ac}+\frac{1}{cd}+\frac{1}{da}}+\frac{c^3}{\frac{1}{ab}+\frac{1}{bd}+\frac{1}{da}}+\frac{d^3}{\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}}\ge\frac{1}{3}\left(a+b+c+d\right)\)
Dấu "=" xảy ra <=> a = b = c = d
Vậy :
\(\frac{1}{x^3\left(yz+zt+ty\right)}+\frac{1}{y^3\left(xz+zt+tx\right)}+\frac{1}{z^3\left(xy+yt+tx\right)}+\frac{1}{t^3\left(xy+yz+zx\right)}\ge\frac{1}{3}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\right)\)
Dấu "=" xảy ra <=> x = y = z = t = 1