Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Có : 52 < 5.6 => \(\frac{1}{5^2}>\frac{1}{5.6}\)
62 < 6.7 =>\(\frac{1}{6^2}>\frac{1}{6.7}\)
....
1002 < 100 . 101 => \(\frac{1}{100^2}>\frac{1}{100.101}\)
Cộng từng vế có :
\(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)
\(A>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...\frac{1}{100}-\frac{1}{101}\)
\(A>\frac{1}{5}-\frac{1}{101}\)
Mà \(\frac{1}{5}-\frac{1}{101}=\frac{101-5}{105}=\frac{96}{505}\)
=> \(A>\frac{96}{505}\)
Mà \(\frac{1}{6}=\frac{96}{576}< \frac{96}{505}\)
=> \(A>\frac{1}{6}\)(1)
*Có 52 > 5.4 => \(\frac{1}{5^2}< \frac{1}{5.4}\)
.......
1002 > 100.99 => \(\frac{1}{100^2}< \frac{1}{100.99}\)
Cộng từng vế có :
........ => A < \(\frac{96}{400}\)
Có \(\frac{1}{4}=\frac{100}{400}>\frac{96}{400}\)
=> A < \(\frac{1}{4}\)(2)
Từ (1)(2) => đpcm
\(\text{Ta thấy :}\)
\(\frac{1}{5^2}>\frac{1}{5.6}\)
\(\frac{1}{6^2}>\frac{1}{6.7}\)
\(......................................\)
\(\frac{1}{100^2}>\frac{1}{100.101}\)
\(\Rightarrow A=\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)
\(\Rightarrow A>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...\frac{1}{100}-\frac{1}{101}\)
\(\Rightarrow A>\frac{1}{5}-\frac{1}{101}=\frac{101-5}{105}=\frac{96}{505}>\frac{96}{576}=\frac{1}{6}\)
\(\Rightarrow A>\frac{1}{6}\left(1\right)\)
\(\text{Lại thấy :}\)
\(\frac{1}{5^2}< \frac{1}{5.4}\)
\(\frac{1}{6^2}< \frac{1}{5.6}\)
\(..................................\)
\(\frac{1}{100^2}< \frac{1}{100.99}\)
\(\text{Tương tự như trên ta tính được }:\)
\(A< \frac{96}{400}< \frac{100}{400}=\frac{1}{4}\)
\(\Rightarrow A< \frac{1}{4}\left(2\right)\)
\(\text{Từ (1) và (2)}\Rightarrow\frac{1}{6}< A< \frac{1}{4}\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}< 1< 2\Rightarrow A< 2\Rightarrowđpcm\)
đặt B=1/2.3+1/3.4+...+1/49.50
=1/1.2+1/2.3+1/3.4+...+1/49.50
=1-1/2+1/2-1/3+...+1/49-1/50
=1-1/50<1 (1)
Mà 1<2(2)
A =1/1+1/2.2+1/3.3+...+1/50.50<1-1/2+1/2-1/3+...+1/49-1/50 (3)
từ (1),(2),(3) =>A<2
Ta có : \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...........+\frac{1}{50^2}=1+\frac{1}{2^2}+........+\frac{1}{50^2}\)
=> \(A<1+\frac{1}{1.2}+\frac{1}{2.3}+.............+\frac{1}{49.50}\)
=> \(A<1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.........+\frac{1}{49}-\frac{1}{50}\)
=> \(A<2-\frac{1}{50}\Rightarrow A<2\)
Vậy A nhỏ hơn 2
\(A=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{27}+2^{28}+2^{29}\right)\\ A=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{27}\left(1+2+2^2\right)\\ A=\left(1+2+2^2\right)\left(1+2^3+...+2^{27}\right)\\ A=7\left(1+2^3+...+2^{27}\right)⋮7\)
xem lại đề. số hạng cuối tử số tự nhiên =2; ??? mẫu số cũng ko theo quy luật của 3 số hạng đầu