Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
\(HM\perp AB; HN\perp AC\Rightarrow \widehat{HMA}=\widehat{HNA}=90^0\)
Xét tứ giác $AMHN$ có tổng 2 góc đối \(\widehat{HMA}+\widehat{HNA}=90^0+90^0=180^0\) nên $AMHN$ là tứ giác nội tiếp (đpcm)
b)
Vì $AMHN$ nội tiếp \(\Rightarrow \widehat{AMN}=\widehat{AHN}\)
Mà \(\widehat{AHN}=\widehat{ACB}(=90^0-\widehat{NHC})\)
\(\Rightarrow \widehat{AMN}=\widehat{ACB}\)
Xét tam giác $AMN$ và $ACB$ có:
\(\left\{\begin{matrix} \widehat{A}-\text{chung}\\ \widehat{AMN}=\widehat{ACB}(cmt)\end{matrix}\right.\Rightarrow \triangle AMN\sim \triangle ACB(g.g)\)
\(\Rightarrow \frac{AM}{AC}=\frac{AN}{AB}\Rightarrow AM.AB=AC.AN\) (đpcm)
c)
Ta có: \(\widehat{ACB}=\widehat{AEB}\) (góc nội tiếp chắn cung $AB$)
\(\widehat{ACB}=\widehat{AMN}\) (cmt)
\(\Rightarrow \widehat{AEB}=\widehat{AMN}\)
\(\Leftrightarrow \widehat{IEB}=180^0-\widehat{BMI}\)
\(\Leftrightarrow \widehat{IEB}+\widehat{BMI}=180^0\), do đó tứ giác $BMIE$ nội tiếp
\(\Rightarrow \widehat{MIE}=180^0-\widehat{MBE}=180^0-90^0=90^0\) (\(\widehat{MBE}=\widehat{ABE}=90^0\) vì là góc nt chắn nửa đường tròn)
\(\Rightarrow MN\perp AE\) . Ta có đpcm.
a, Ta có: $HM⊥AB;HN⊥AC$
$⇒\widehat{HMA}=\widehat{HNA}=90^o$
$⇒\widehat{HMA}+\widehat{HNA}=180^o$
$⇒$ Tứ giác $AMHN$ nội tiếp (Tổng 2 góc đối $=180^o$)
b, Xét tam giác $AHB$ vuông tại $H$
Đường cao $HM$ (do $HM⊥AB$)
Nên $AH^2=AM.AB(1)$
Xét tam giác $AHC$ vuông tại $H$
Đường cao $HN$ (do $HN⊥AB$)
Nên $AH^2=AN.AC(2)$
Từ $(1)(2)⇒AM.AB=AN.AC$
$⇒\dfrac{AM}{AC}=\dfrac{AN}{AB}$
Xét tam giác $AMN$ và tam giác $ACB$ có:
$\dfrac{AM}{AC}=\dfrac{AN}{AB}$
$\widehat{A}$ chung
$⇒$ tam giác $AMN$ $\backsim$ tam giác $ACB(c.g.c)$
(đpcm)
c, tam giác $AMN$ $\backsim$ tam giác $ACB$
$⇒\widehat{ANM}=\widehat{ABC}$
Xét $(O)$ có: $\widehat{ABC}=\widehat{AEC}$ (các góc nội tiếp cùng chắn cung $AC$)
Nên $\widehat{ANM}=\widehat{AEC}$
Hay $\widehat{ANI}=\widehat{IEC}$
$⇒$ Tứ giác $CEIN$ nội tiếp (góc ngoài tại 1 đỉnh = góc trong đỉnh đối diện)
c, Ta có: $\widehat{ANM}=\widehat{ABC}$
Mà $\widehat{ABC}+\widehat{AKC}=180^o$
do tứ giác $ABCK$ nội tiếp $(O)$
Nên $\widehat{ANM}+\widehat{AKC}=180^o$
Mà $\widehat{ANM}+\widehat{ANK}=180^o$
Nên $\widehat{AKC}=\widehat{ANK}$
Xét tam giác $AKC$ và tam giác $ANK$ có:
$\widehat{AKC}=\widehat{ANK}$
$\widehat{A}$ chung
nên tam giác $AKC$ $\backsim$ tam giác $ANK(g.g)$
$⇒\dfrac{AK}{AN}=\dfrac{AC}{AK}$
$⇒AK^2=AN.AC$
mà $AH^2=AN.AC(cmt)$
$⇒AK^2=AH^2$
hay $AK=AH$
suy ra tam giác $AHK$ cân tại $A$
Bạn xem lại đề bài. Đường kính AE cắ đường tròn tại I?? ; MM cắt (O; R) ??; và K là điểm nào?
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)
1: góc AMO+góc ANO=180 độ
=>AMON nội tiếp
2: ΔOAB cân tại O
mà OM là đường cao
nên M là trung điểm của AB
ΔOAC cân tại O
mà ON là đường cao
nên N là trung điểm của AC
=>NM là đừog trung bình
=>MN//BC
=>MN//AE
=>AMNE là hình thang cân
=>AM=EN; AN=EM
ΔAHB vuông tại H có HM là trung tuyến
nên HM=AB/2=MA=MB
ΔHAC vuông tại H có HN là trung tuyến
nên HN=AN=CN=AC/2
=>HM=EN; HN=EM
=>HMEN là hình bbình hành
=>K làtrung điểm của MN
=>IK vuông góc MN
=>IK vuông góc BC
3: goc MDE+gó MDH=180 độ
=>góc MDE=góc MBH
=>BMDH nội tiếp
=>góc MDB=góc MHB=góc MBH
=>góc MDB=góc MDE
=>DM là phân giác của góc BDE
1: góc AMO+góc ANO=180 độ
=>AMON nội tiếp
2: Gọi giao EO và BC là P
AE//BC
AE vuông góc OE
=>OE vuông góc BC
=>OP vuông góc BC
=>P là trung điểm của BC
AEPH là hình chữ nhật
=>AE=PH
EJ giao BC=J
=>AE=JC
=>JC=HP
=>HJ=PC=BC/2=MN
=>HMNJ là hình bình hành
=>HM//NJ và HM=NJ
=>HM//EN và HM=EN
=>EMHN là hbh
=>K là trung điểm của MN
=>IK vuông góc MN
=>IK vuông góc BC
a) xét tứ giác AHMN có:
\(\widehat{AHM}+\widehat{ANH}=90^o+90^o=180^o\)
=> Tứ giác AHMN nội tiếp
b) Xét tam giác vuông AHB đường cao HM
=> AM.AB=AH2
Xét tam giác vuông AHC có đường cao HN
=> AN.AC=AH2
=> AM.AB=AN.AC
c) Nối BE
AE là đường kính, B thuộc đường tròn
=> \(\widehat{ABE}=90^o\Rightarrow\widehat{CBE}+\widehat{ABH}=90^o\)
Mà \(\widehat{CBE}=\widehat{CAE}\)(cùng chắn cung CE)
=> \(\widehat{CAE}+\widehat{ABH}=90^o\)=> \(\widehat{CAE}=\widehat{BAH}\)(cùng phụ \(\widehat{ABH}\))
=> \(\widehat{BAE}=\widehat{HAC},\widehat{AMN}=\widehat{AHN}\)(cùng chắn cung AN, tứ giác ANHM nội tiếp)
=> \(\widehat{BAE}+\widehat{AMN}=\widehat{HAC}+\widehat{AHN}=90^o\)
=> \(\widehat{AOM}=90^o\Rightarrow AE\perp MN\)
d) Xét tam giác AKE vuông tại K, KI là đường cao
=> AI.AE=AK2
Xét tam giác AN và tam giác ACE có: \(\widehat{AIN}=\widehat{ACE}=90^o\)
\(\widehat{AIN}\)chung
\(\Rightarrow\Delta AIN\)đồng dạng với tam giác ACE (gg)
=> \(\frac{AI}{AC}=\frac{AN}{AE}\Leftrightarrow AI\cdot AE=AC\cdot AN\)
Mà AN.AC=AH2
=> AK2=AH2 => AH=AK
giá như bạn trả lời sớm hơn thì tốt quá , giờ tớ ko cần lắm @@ , lúc thi trực tuyến đăng bài ko có ai giải , sau khi vừa kết thúc thì có người giải ^^