K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2020

Ta có BĐT phụ : \(a^3+b^3\ge ab\left(a+b\right)\)

\(\Rightarrow a^3+b^3+1\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)

\(\Rightarrow\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b+c\right)}\)

Tương tự : ...

\(\Rightarrow\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{a^3+c^3+1}\le\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\frac{1}{a+b+c}\)

\(=\frac{a+b+c}{abc}.\frac{1}{a+b+c}=\frac{1}{abc}=1\)

BĐT đã được c/m. 

Dấu "=" xảy ra khi a = b = c = 1

15 tháng 5 2016

ta có : \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(a+c\right)}+\frac{1}{c^3\left(a+b\right)}=\frac{\frac{1}{a^2}}{a\left(b+c\right)}+\frac{\frac{1}{b^2}}{b\cdot\left(a+c\right)}+\frac{\frac{1}{c^2}}{c\left(a+b\right)}\)(1)

dùng Svaxo ta có (1) <=>\(\frac{\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)^2}{a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)}=\frac{ab+bc+ca}{2}>=\frac{3a^2b^2c^2}{2}=\frac{3}{2}\)(côsi )

15 tháng 5 2016

mik viết nhầm phải là (1) >=

18 tháng 1 2016

dùng bđt phụ: x3+y3>x2y+xy2 rồi đánh giá từng mẫu nhé, số 1 ở mẫu chuyển thành abc rồi ghép vào là ra

14 tháng 11 2019

Đặt \(\left(a;b;c\right)\rightarrow\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)

Ta có:

\(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\)

\(=\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\left(1\right)\)

Áp dụng BĐT phụ \(x^3+y^3\ge xy\left(x+y\right)\)

\(\Rightarrow\left(1\right)\le\frac{1}{xy\left(x+y\right)+xyz}+\frac{1}{yz\left(y+z\right)+xyz}+\frac{1}{zx\left(z+x\right)+xyz}\)

\(=\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{zx\left(x+y+z\right)}\)

\(=\frac{z}{xyz\left(x+y+z\right)}+\frac{x}{xyz\left(x+y+z\right)}+\frac{z}{xyz\left(x+y+z\right)}\)

\(=\frac{x+y+z}{xyz\left(x+y+z\right)}=1\)

Dấu "=" xảy ra tại \(x=y=z=1\) hay \(a=b=c=1\)

14 tháng 11 2019

Nhầm dòng thứ 3 dưới lên ạ:(

\(\frac{z}{xyz\left(x+y+z\right)}+\frac{x}{xyz\left(x+y+z\right)}+\frac{y}{xyz\left(x+y+z\right)}\) mới đúng nha !

18 tháng 5 2017

đặt x = a; y = b/2; z = c/3. khi đó ta có \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\le1.\)

quy đồng, nhân chéo ta được (1+x)(1+y) + (1+y)(1+z) + (1+z)(1+x) \(\le\)(1+x)(1+y)(1+z).

nhân phá ngoặc, rút gọn ta được x + y + z + 2 \(\le\)xyz. (1)

mặt khác ta có \(1\ge\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{9}{\left(1+x\right)+\left(1+y\right)+\left(1+z\right)}\ge\frac{9}{x+y+z+3}\)

nên x+ y + z \(\ge\)6 (2)

từ (1) và (2) suy ra xyz \(\ge\)8 hay S = abc \(\ge\)48.

dấu bằng xảy ra khi x = y = z = 2 hay a = 2; b = 4; c = 6.

vậy Min S = 48.

19 tháng 5 2017

hình như cái BĐT ở dưới chỗ "Mặc khác ta có" sai

16 tháng 1 2019

Mình có cách này,không chắc lắm:

\(VT=\frac{a}{a\left(a^2+bc+1\right)}+\frac{b}{b\left(b^2+ac+1\right)}+\frac{c}{c\left(c^2+ab+1\right)}\) (làm tắt,bạn tự hiểu nha)

\(=\frac{1}{a^2+bc+1}+\frac{1}{b^2+ac+1}+\frac{1}{c^2+ab+1}\)

\(\le\frac{1}{3}\left(\frac{1}{\sqrt[3]{a}}+\frac{1}{\sqrt[3]{b}}+\frac{1}{\sqrt[3]{c}}\right)\)

\(=\frac{1}{3}\left[\left(1+1+1\right)-\left(\frac{\sqrt[3]{a}-1}{\sqrt[3]{a}}+\frac{\sqrt[3]{b}-1}{\sqrt[3]{b}}+\frac{\sqrt[3]{c}-1}{\sqrt[3]{c}}\right)\right]\)

\(=1-\frac{1}{3}\left(\frac{\sqrt[3]{a}-1}{\sqrt[3]{a}}+\frac{\sqrt[3]{b}-1}{\sqrt[3]{b}}+\frac{\sqrt[3]{c}-1}{\sqrt[3]{c}}\right)\)

Áp dụng BĐT Cô si với biểu thức trong ngoặc:

\(=1-\frac{1}{3}\left(\frac{\sqrt[3]{a}-1}{\sqrt[3]{a}}+\frac{\sqrt[3]{b}-1}{\sqrt[3]{b}}+\frac{\sqrt[3]{c}-1}{\sqrt[3]{c}}\right)\)

\(\le1-\sqrt[3]{\left(\sqrt[3]{a}-1\right)\left(\sqrt[3]{b}-1\right)\left(\sqrt[3]{c-1}\right)}\le1^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi a = b = c = 1

17 tháng 1 2019

Ta c/m bđt sau: 

\(a^3+1\ge a^2+a\)

\(\Leftrightarrow a^3+1-a^2-a\ge0\Leftrightarrow a\left(a^2-1\right)-\left(a^2-1\right)\ge0\Leftrightarrow\left(a-1\right)^2\left(a+1\right)\ge0\)

\(\Rightarrow\frac{a}{a^3+a+1}\le\frac{a}{a^2+2a}=\frac{1}{a+2}\)

\(\Rightarrow\frac{a}{a^3+a+1}+\frac{b}{b^3+b+1}+\frac{c}{c^3+c+1}\le\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\)

Đặt \((a,b,c)\rightarrow(\frac{x}{y},\frac{y}{z},\frac{z}{x})\)

\(\Rightarrow\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=\frac{y}{x+2y}+\frac{z}{y+2z}+\frac{x}{z+2x}=\frac{1}{2}\left(1-\frac{x}{x+2y}+1-\frac{y}{y+2z}+1-\frac{z}{z+2x}\right)=\frac{3}{2}-\frac{1}{2}\left(\frac{x^2}{x^2+2xy}+\frac{y^2}{y^2+2yz}+\frac{z^2}{z^2+2xy}\right)\)\(\le\frac{3}{2}-\frac{1}{2}\left(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}\right)=\frac{3}{2}-\frac{1}{2}.\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)

Dấu bằng xảy ra khi a=b=c=1

11 tháng 4 2017

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\)

Ta có:

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge\frac{3a}{4}\)

\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}\ge\frac{6a-b-c-2}{8}\)

Tương tự ta có: \(\hept{\begin{cases}\frac{b^3}{\left(1+c\right)\left(1+a\right)}\ge\frac{6b-c-a-2}{8}\\\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{6c-a-b-2}{8}\end{cases}}\)

Cộng vế theo vế ta được

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{6a-b-c-2}{8}+\frac{6b-c-a-2}{8}+\frac{6c-a-b-2}{8}\)

\(=\frac{a+b+c}{2}-\frac{3}{4}\ge\frac{3}{2}.\sqrt[3]{abc}-\frac{3}{4}=\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\)

10 tháng 4 2017

Mai mình làm cho

4 tháng 8 2017

abc = 1 \(\Rightarrow\frac{1}{abc}=1\Rightarrow xyz=1\)

Đặt \(a=\frac{1}{x}\);  \(b=\frac{1}{y}\);   \(c=\frac{1}{z}\)(x, y, z > 0)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{a^3}=x^3\\\frac{1}{b+c}=\frac{1}{\frac{1}{y}+\frac{1}{z}}=\frac{1}{\frac{y+z}{yz}}=\frac{yz}{y+z}\end{cases}\Leftrightarrow\frac{1}{a^3\left(b+c\right)}=\frac{x^3yz}{y+z}=\frac{x^2}{y+z}}\)

Tương tự, ta có :

\(\frac{1}{b^3\left(a+c\right)}=\frac{y^2}{z+x}\)

\(\frac{1}{c^3\left(a+b\right)}=\frac{z^2}{x+y}\)

Ta cần cm :   \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{3}{2}\)

Áp dụng bđt Cau chy cho x, y, z > 0

\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{4}}=x\)

\(\frac{y^2}{z+x}+\frac{z+x}{4}\ge y\)

\(\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)

\(\Leftrightarrow\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{x+y+z}{2}\)

Ta cần cm :    \(\frac{x+y+z}{2}\ge\frac{3}{2}\)

\(\Leftrightarrow x+y+z\ge3\)

Áp dụng bđt Cauchy cho x, y, z> 0

\(x+y+z\ge3\sqrt[3]{xyz}=3\)

30 tháng 8 2020

trong tập chuyên đề về Svac-xơ cũng có câu này , còn về cách chứng minh thì easy lắm 

Do \(abc=1\)Nên có thể viết lại bđt cần chứng minh trở thành :

\(\frac{a^2b^2c^2}{a^3\left(b+c\right)}+\frac{a^2b^2c^2}{b^3\left(a+c\right)}+\frac{a^2b^2c^2}{c^3\left(a+b\right)}\ge\frac{3}{2}\)

\(< =>\frac{b^2c^2}{a\left(b+c\right)}+\frac{a^2c^2}{b\left(a+c\right)}+\frac{a^2b^2}{c\left(a+b\right)}\ge\frac{3}{2}\)

Sử dụng bất đẳng thức Svac-xơ ta có : 

\(\frac{b^2c^2}{a\left(b+c\right)}+\frac{a^2c^2}{b\left(a+c\right)}+\frac{a^2b^2}{c\left(a+b\right)}\ge\frac{\left(ab+bc+ca\right)^2}{ab+ac+ba+bc+ca+cb}\)

\(=\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)

Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(ab+bc+ca\ge3\), thật vậy :

Sử dụng bất đẳng thức AM-GM cho 3 số thực dương ta có :

\(ab+bc+ca\ge3\sqrt[3]{abbcca}=3\sqrt[3]{a^2b^2c^2}=3\left(đpcm\right)\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\)