K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn tự vẽ hình nha!!!

a.

Tam giác ABC vuông tai A có:

ABC + ACB = 90

 60   + ACB = 90

          ACB = 90 - 60

          ACB = 30

Tam giác ABC có:

ABC > ACB ( 60 > 30 )

=> AC > AB (quan hệ giữa góc và cạnh đối diện)

=> HC > HB (quan hệ giữa đường xiên và hình chiếu)

b.

Xét tam giác AHC và tam giác DHC có:

HA = HD (gt)

AHD = DHC ( = 90 )

HC là cạnh chung

=> Tam giác AHC = Tam giác DHC (c.g.c)

c.

Xet tam giác ABC và tam giác DBC có:

AC = DC (Tam giác AHC = Tam giác DHC)

ACB = DCB (Tam giác AHC = Tam giác DHC)

BC là cạnh chung 

=> Tam giác ABC = Tam giác DBC (c.g.c)

=> BAC = BDC (2 cạnh tương ứng)

 mà BAC = 90

=> BDC = 90

a: \(\widehat{C}=90^0-60^0=30^0\)

Xét ΔABC có \(\widehat{C}< \widehat{B}\)

nên AB<AC

Xét ΔABC có AB<AC

mà HB là hình chiếu của AB trên BC

và HC là hình chiếu của AC trên BC

nên HB<HC

b: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có

HC chung

HA=HD

Do đó: ΔAHC=ΔDHC

c: Xét ΔBAC và ΔBDC có 

CA=CD

\(\widehat{ACB}=\widehat{DCB}\)

CB chung

Do đó: ΔBAC=ΔBDC

Suy ra: \(\widehat{BAC}=\widehat{BDC}=90^0\)

a: \(\widehat{C}=90^0-60^0=30^0\)

Xét ΔABC có \(\widehat{C}< \widehat{B}\)

nên AB<AC

Xét ΔABC có AB<AC

mà HB là hình chiếu của AB trên BC

và HC là hình chiếu của AC trên BC

nên HB<HC

b: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có

HC chung

HA=HD

Do đó: ΔAHC=ΔDHC

c: Xét ΔBAC và ΔBDC có 

CA=CD

\(\widehat{ACB}=\widehat{DCB}\)

CB chung

Do đó: ΔBAC=ΔBDC

Suy ra: \(\widehat{BAC}=\widehat{BDC}=90^0\)

15 tháng 4 2022

Bn tham khảo nha undefined

8 tháng 7 2016
bạn nào giúp mình với
31 tháng 1 2020

Hình tự vẽ

+) Xét \(\Delta ABC\) vuông tại A  có

\(\widehat{B}+\widehat{ACB}=90^o\)  ( tính chất tam giác vuông)

\(\Rightarrow60^o+\widehat{ACB}=90^o\)

\(\Rightarrow\widehat{ACB}=30^o\)

\(\Rightarrow\widehat{ABC}>\widehat{ACB}\)           ( do \(60^o>30^o\)  )

\(\Rightarrow AC>AB\)  (Trong một tam giác, cạnh đối diện với góc lớn hơn là cạnh lớn hơn)

+) Xét \(\Delta ABH\) vuông tại H ta có 

\(\widehat{B}+\widehat{HAB}=90^o\)   ( tính chất tam giác vuông)

\(\Rightarrow60^o+\widehat{HAB}=90^o\)

\(\Rightarrow\widehat{HAB}=30^o\)

+) Ta có AH nằm giữa AC và AB                               ( chỗ này mk ko bt lí giải)

\(\Rightarrow\widehat{HAB}+\widehat{HAC}=\widehat{BAC}\)

\(\Rightarrow\widehat{HAC}+30^o=90^o\)

\(\Rightarrow\widehat{HAC}=90^o-30^o=60^o\)

\(\Rightarrow\widehat{HAC}< \widehat{HAB}\)        ( do \(60^o>30^o\))

\(\Rightarrow CH< HB\)   (Trong một tam giác, cạnh đối diện với góc lớn hơn là cạnh lớn hơn)

b)  Ta có điểm D thuộc tia đối tia HA   (gt)

Mà AH \(\perp\) BC

\(\Rightarrow HD\perp\) BC
\(\Rightarrow\widehat{DHC}=\widehat{AHC}\left(=90^o\right)\)

+) Xét \(\Delta AHC\) vuông tại H và \(\Delta DHC\)  vuông tại H có 

HC: cạnh chung

\(\widehat{DHC}=\widehat{AHC}\)              (cmt)

AH = HD   ( gt)

=> \(\Delta AHC\)\(\Delta DHC\)          ( c- g-c)

c)  +) Theo câu b, ta có    \(\Delta AHC\)=   \(\Delta DHC\)

                      \(\Rightarrow\widehat{ACH}=\widehat{DCH}\)          ( 2 cạnh tương ứng)

                           và AC = AD   ( 2 cạnh tương ứng)

+) Xét \(\Delta DBC\)  và \(\Delta ABC\)  có

BC : cạnh chung

\(\widehat{DCH}=\widehat{ACH}\)         ( cmt)

AD = AC   (cmt)

\(\Rightarrow\Delta DBC=\Delta ABC\)         ( c-g-c)

\(\Rightarrow\widehat{BDC}=\widehat{BAC}=90^o\)            ( 2 cạnh tương ứng)

~ Học tốt

21 tháng 5 2021

bạn ơi sao góc HAC < góc HAB được

7 tháng 2 2020

Câu hỏi của nguyen anh ngoc ly - Toán lớp 7 - Học toán với OnlineMath

19 tháng 4 2021

A B C 60 H

29 tháng 1 2018

nếu bạn học tan, sin, cos thì bài này rất dễ, nếu không thì cứ dùng pytago, nếu cạnh AB=a thì BC=2a còn AC= a\(\sqrt{3}\)

BH=a/2 và CH= 3a/2. nếu không dùng được mấy cái đó thì tam giác ABC là nửa tam giác đều ( lấy 1 điểm E đối xứng với B qua A sẽ có tam giác đều CEB, chứng minh đơn giản), tương tự có tam giác ABH là nửa tam giác đều

b) chứng  minh bằng nhau theo cạnh góc cạnh (AH= DH, CH chung, 2 góc AHC và DHC = 90 độ)

c) chứng minh tam giác BDC = tam giác BAC ( từ câu b nên DC=AC, ACB=DCB và chung cạnh BC) - cạnh góc cạnh nên góc CAB= CDB= 90 độ

https://www.facebook.com/anhquyen3ro có gì không hiểu cứ liên hệ mình nhé

5 tháng 3 2018

a/ Ta có: tam giác ABC vuông tại A

góc ABC = 600 => góc ACB = 300

Ta thấy: góc ABC > góc ACB

=> AB < AC

Trong tam giác ABH vuông tại H có:

góc ABC + góc BAH = 900

Mà góc ABC = 600 => góc BAH = 300

Trong tam giác ACH vuông tại H có:

góc ACB + góc CAH = 900

Mà góc ACB = 300 (cmt) => góc CAH = 600

Ta thấy: góc BAH < góc CAH

=> BH < CH

b/ Xét hai tam giác vuông AHC và DHC có:

AH = HD (GT)

CH: cạnh chung

=> tam giác AHC = tam giác DHC

c/ Xét tam giác ABC và tam giác DBC có:

BC: cạnh chung

góc ACB = góc DCB (t/g AHC = t/g DHC)

AC = DC (t/g AHC = t/g DHC)

=> tam giác ABC = tam giác DBC

=> góc BAC = góc BDC = 900