K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2018

1) ΔABC cân tại A ; AF là trung tuyến ( F là trung điểm BC )

\(\Rightarrow\) AF đồng thời là đường cao \(\Rightarrow\) \(\widehat{AFC}\) = 90\(^O\)

Xét tứ giác AFCO có :

AE = EC ( E là trung điểm AC )

EF = OE ( O đối xứng với F qua E )

AC \(\cap\) OF = \(\left\{E\right\}\)

\(\Rightarrow\) AFCO là hình bình hành

\(\widehat{AFC}\) = 90O (cmt) \(\Rightarrow\) AFCO là hình chữ nhật

2) a) Xét ΔABC có :

BF = CF ( F là trung điểm BC )

AE = CE ( E là trung điểm AC )

\(\Rightarrow\) EF là đường trung bình ΔABC

\(\Rightarrow\) EF // AB ; EF = \(\dfrac{1}{2}\) AB ( Tính chất đường trung bình trong tam giác )

CMTT : DE là đường trung binh ΔABC

\(\Rightarrow\) DE // BC ( Tính chất đường trung bình tỏng tam giác )

EF = EO = \(\dfrac{1}{2}\) AB ( cmt ) ; AD = \(\dfrac{1}{2}\) AB ( D là trung điểm AB )

\(\Rightarrow\) EO = AD

Xét tứ giác ADEO có :

EO = AD ( cmt )

EO // AD ( EF // AD )

\(\Rightarrow\) ADEO là hình bình hành \(\Rightarrow\) AP = EP

CMTT : DECF là hình bình hành \(\Rightarrow\) EQ = FQ

b) DE // BC (cmt) ; AF\(\perp\)BC ( \(\widehat{AFC}\) = 90O )

\(\Rightarrow\) DE \(\perp\) AF

Xét ΔAEF có :

AP = EP (cmt)

EQ = FQ (cmt)

\(\Rightarrow\) PQ là đường trung bình ΔAEF

\(\Rightarrow\) PQ // AF (Tính chất đường trung bình trong tam giác)

mà DE \(\perp\) AF (cmt) \(\Rightarrow\) PQ \(\perp\) DE

27 tháng 11 2017

3 tháng 11 2022

cho \(\Delta ABCD\)

a) Ta có: ΔABC cân tại A(gt)

mà AF là đường trung tuyến ứng với cạnh đáy BC(do F là trung điểm của BC)

nên AF cũng là đường cao của ΔABC(định lí tam giác cân)

Xét tứ giác AFCO có

E là trung điểm của đường chéo AC(gt)

E là trung điểm của đường chéo OF(do O và F đối xứng nhau qua E)

Do đó: AFCO là hình bình hành(dấu hiệu nhận biết hình bình hành)

Xét hình bình hành AFCO có \(\widehat{AFC}=90\)độ(do AF⊥BC)

nên AFCO là hình chữ nhật(dấu hiệu nhận biết hình chữ nhật)

b)Xét ΔABC có
D là trung điểm của AB(gt)

E là trung điểm của AC(gt)

Do đó: DE là đường trung bình của ΔABC(định nghĩa đường trung bình của tam giác)

\(DE\)//BC và \(DE=\frac{BC}{2}\)(định lí 2 về đường trung bình của tam giác)

Ta có: AF⊥BC(do AF là đường cao của ΔABC)

mà DE//BC(cmt)

nên DE⊥AF(định lí 2 về quan hệ giữa vuông góc và song song)

Ta có: AO=FC(do AO và FC là hai cạnh đối của hình chữ nhật AOCF)

mà FC=BF(do F là trung điểm của BC)

nên AO=BF(1)

Ta có: \(DE=\frac{BC}{2}\)(cmt)

\(FC=BF=\frac{BC}{2}\)(do F là trung điểm của BC)

nên DE=BF=FC(2)

Từ (1) và (2) suy ra AO=DE

Ta có: AB=AC(do ΔABC cân tại A)

mà AC=FO(do AC và FO là hai đường chéo của hình chữ nhật AOFC)

nên AB=FO

\(\Rightarrow\frac{AB}{2}=\frac{FO}{2}\)(3)

\(AD=\frac{AB}{2}\)(do D la trung điểm của AB) (4)

\(OE=\frac{FO}{2}\)(do E là trung điểm của FO) (5)

nên từ (3),(4),(5)suy ra AD=OE

Xét tứ giác ADEO có AD=OE(cmt) và AO=DE(cmt)

nên ADEO là hình bình hành(dấu hiệu nhận biết hình bình hành)

\(\Rightarrow AE\) và DO cắt nhau tại trung điểm mỗi đường

\(AE\cap DE=\left\{P\right\}\)(gt)

nên P là trung điểm của AE

Ta có: DE//BC(cmt)

mà F∈BC(do F là trung điểm của BC)

nên DE//FC

Xét tứ giác DECF có

DE//FC(cmt) và DE=FC(cmt)

nên DECF là hình bình hành(dấu hiệu nhận biết hình bình hành)

⇒2 đường chéo DC và FE cắt nhau tại trung điểm của mỗi đường(định lí hình bình hành)

\(DC\cap FE=\left\{Q\right\}\)(gt)

nên Q là trung điểm của FE

Xét ΔEAF có

P là trung điểm của AE(cmt)

Q là trung điểm của FE(cmt)

Do đó: FQ là đường trung bình của ΔEAF(định nghĩa đường trung bình của tam giác)

⇒FQ//AF(định lí 2 về đường trung bình của tam giác)

Ta có: DE⊥AF(cmt)

FQ//AF(cmt)

Do đó: DE⊥FQ(định lí 2 về quan hệ giữa vuông góc và song song)(đpcm)

4 tháng 11 2019

Wow, dài thế

Cảm ơn bạn nhiều vì đã bỏ công giúp mình nhé haha

20 tháng 1 2017

sao khó vậy

20 tháng 1 2017

mk học nhà cô, cô cho zậy đó

5 tháng 1 2019

Bạn có thể chụp hình mình xem với không??,

Chỗ mk PQ không vuông góc với AE

17 tháng 12 2022

1: Xét tứ giác AFCO có

E là trung điểm chung của AC và FO

nên AFCO là hình bình hành

mà góc AFC=90 đô

nên AFCO là hình chữ nhật

2: Xét ΔABC có AD/AB=AE/AC

nên DE//BC và DE=1/2BC=FC=AO

=>DE//AO và DE=AO

=>AOED là hình bình hành

3: Sửa đề; Cm PQ vuông góc với DE

Xét tứ giác DECF có

DE//CF

DE=CF

Do đó: DECF là hình bình hành

=>Q là trung điểm của DC

Xét ΔDOC co DP/DO=DQ/DC

nên PQ//OC

=>PQ vuông góc với DE

a: Xét ΔABC có 

D là trung điểm của AB

E là trung điểm của AC

Do đó: DE là đường trung bình

=>DE//BC và DE=BC/2

hay DE//BF và DE=BF

=>BDEF là hình bình hành

b: Xét tứ giác AMCF có 

E là trung điểm của AC

E là trung điểm của MF

Do đó: AMCF là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCF là hình chữ nhật