Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi A' là giao điểm của đường tròn ngoại tiếp tam giác AEF và tia AB
Ta chứng minh được E,A,N và M, A, F thẳng hàng
=> A đối xứng với A' qua C => B đối xứng với A' qua điểm A mà A' cố định
=> Tâm I của đường tròn ngoại tiếp tam giác BMN nằm trên đường trung trực của đoạn thẳng BA'.
a: Xét (O) có
ΔAKB nội tiếp
AB là đường kính
Do đó: ΔAKB vuông tại K
Xét tứ giác AECK có \(\widehat{AEC}+\widehat{AKC}=90^0+90^0=180^0\)
nên AECK là tứ giác nội tiếp
b: Xét ΔIAB có
BK,IE là các đường cao
BK cắt IE tại C
Do đó: C là trực tâm của ΔIAB
=>AC\(\perp\)IB tại D
Xét tứ giác CEBD có \(\widehat{CEB}+\widehat{CDB}=90^0+90^0=180^0\)
nên CEBD là tứ giác nội tiếp
Xét tứ giác AKCE có \(\widehat{AKC}+\widehat{AEC}=90^0+90^0=180^0\)
nên AKCE là tứ giác nội tiếp
Xét tứ giác IKCD có \(\widehat{IKC}+\widehat{IDC}=90^0+90^0=180^0\)
nên IKCD là tứ giác nội tiếp
Ta có: \(\widehat{DKC}=\widehat{DIC}\)(DIKC nội tiếp)
\(\widehat{EKC}=\widehat{EAC}\)(KAEC nội tiếp)
mà \(\widehat{DIC}=\widehat{EAC}\left(=90^0-\widehat{DBA}\right)\)
nên \(\widehat{DKC}=\widehat{EKC}\)
=>KC là phân giác của góc DKE
Ta có: \(\widehat{KDC}=\widehat{KIC}\)(DIKC là tứ giác nội tiếp)
\(\widehat{EDC}=\widehat{EBC}\)(EBDC nội tiếp)
mà \(\widehat{KIC}=\widehat{EBC}\left(=90^0-\widehat{KAB}\right)\)
nên \(\widehat{KDC}=\widehat{EDC}\)
=>DC là phân giác của góc KDE
Xét ΔKED có
DC,KC là các đường phân giác
Do đó: C là tâm đường tròn nội tiếp ΔKED
=>C cách đều ba cạnh của ΔKED
1) Xét tứ giác CIME có
\(\widehat{MIC}\) và \(\widehat{MEC}\) là hai góc đối
\(\widehat{MIC}+\widehat{MEC}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: CIME là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)