Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác ABOC có
\(\widehat{ABO}\) và \(\widehat{ACO}\) là hai góc đối
\(\widehat{ABO}+\widehat{ACO}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABO vuông tại B có BH là đường cao ứng với cạnh huyền OA, ta được:
\(AH\cdot AO=AB^2\)(1)
Xét (O) có
\(\widehat{ABD}\) là góc tạo bởi tiếp tuyến BA và dây cung BD
\(\widehat{BED}\) là góc nội tiếp chắn \(\stackrel\frown{BD}\)
Do đó: \(\widehat{ABD}=\widehat{BED}\)(Hệ quả góc tạo bởi tiếp tuyến và dây cung)
hay \(\widehat{ABD}=\widehat{AEB}\)
Xét ΔABD và ΔAEB có
\(\widehat{ABD}=\widehat{AEB}\)
\(\widehat{BAD}\) chung
Do đó: ΔABD∼ΔAEB(g-g)
Suy ra: \(\dfrac{AB}{AE}=\dfrac{AD}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=AE\cdot AD\)(2)
Từ (1) và (2) suy ra \(AH\cdot AO=AD\cdot AE\)(đpcm)
Gọi K là trung điểm của AO
=>MK=IK=1/2AO
Từ G kẻ GG'//IK(G' thuộc MK)
=>GG'/IK=MG/MI=2/3IK=1/3AO ko đổi(1)
MG'=2/3MK
=>G' cố định(2)
Từ (1), (2) suy ra G cố định
a) Xét tứ giác ABOC có
\(\widehat{ABO}\) và \(\widehat{ACO}\) là hai góc đối
\(\widehat{ABO}+\widehat{ACO}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
1) Do B, C cùng thuộc đường tròn đường kính AO nên \(\widehat{ABO}=\widehat{ACO}=90^o\) (Góc nội tiếp chắn nửa đường tròn)
Vậy nên AB, AC là các tiếp tuyến của đường tròn (O).
Xét tam giác vuông ABO có \(AO=R\sqrt{2};OB=R\)
Áp dụng định lý Pi-ta-go ta có:
\(AB=\sqrt{AO^2-BO^2}=R\)
Vậy thì AC = AB = R.
2) Ta thấy tứ giác ABOC có AB = BO = OC = CA = R nên nó là hình thoi.
Lại có \(\widehat{ABO}=90^o\) nên ABOC là hình vuông.
3) Xét tam giác ADC và tam gác ACE có:
Góc A chung
\(\widehat{ACD}=\widehat{AEC}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến dây cung cùng chắn cung DC)
\(\Rightarrow\Delta ADC\sim\Delta ACE\left(g-g\right)\)
\(\Rightarrow\frac{AD}{AC}=\frac{AC}{AE}\Leftrightarrow AD.AE=AC^2=R^2\) = hằng số.
Hoàn toàn tương tự ta cũng có AM.AN = AB2 = R2 = hằng số.
Vậy nên AM.AN = AD.AE = R2.
4) Xét đường tròn (O), ta có K là trung điểm dây cung MN nên theo liên hệ đường kính dây cung, ta có: \(OK\perp MN\) hay \(\widehat{AKO}=90^o\)
Vậy thì K thuộc đường tròn đường kính OA.
Do AMN là cát tuyến nên K thuộc cung tròn BmC (trên hình vẽ).
5) Ta có ABOC là hình vuông nên AO và BC cắt nhau tại trung điểm mỗi đường.
Vậy thì BC qua tâm I.
Từ đó ta có \(\widehat{IJO}=90^o\)
Lại vừa chứng minh được \(\widehat{JKO}=90^o\).
Tứ giác IJKO có tổng hai góc đối bằng 180o nên IJKO là tứ giác nội tiếp hay O, K, I, J cùng thuộc một đường tròn.
Ta có AB = AC nên \(\widebat{AB}=\widebat{AC}\Rightarrow\widehat{BKA}=\widehat{CBA}=\widehat{JBA}\)
Vậy thì \(\Delta ABJ\sim\Delta AKB\left(g-g\right)\Rightarrow\frac{AB}{AK}=\frac{AJ}{AB}\Rightarrow AJ.AK=AB^2\)
a: góc SAO=góc SHO=90 độ
=>SAHO nội tiếp
b: Xét ΔSAB và ΔSCA có
góc SAB=góc SCA
góc ASB chung
=>ΔSAB đồng dạng với ΔSCA
=>SA^2=SB*SC
a) góc AOC =1/2 góc COB
mà CIB = 1/2 góc COB ( góc nội tiếp )
=> góc AOC=góc BIC