K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=\left(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}-1-\dfrac{1}{2}-...-\dfrac{1}{25}\)

\(=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)(đpcm)

28 tháng 6 2021

\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{50}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{25}\right)\)

\(=\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+...+\dfrac{1}{50}\)   (đpcm)

9 tháng 10 2016

Ta biến đổi vế phải :

1-1/2+1/3-1/4+.....+1/49-1/50

=(1+1/3+1/5+....+1/49)-(1/2+1/4+1/6+.......+1/50)

=(1+1/2+1/3+.....+1/49+1/50)-2(1/2+1/4+1/6+......+1/50)

=(1+1/2+...+1/50)-(1+1/2+1/3+....+1/25)

=1/26+1/27+.......+1/50

Vậy 1/26+1/27+1/28+.....+1/50=1-1/2+1/3-1/4+......+1/49-1/50

Mình không bấm phân số được mong mấy bạn thông cảm

 1/26+1/27+1/28+...+1/49+1/50=1-1/2+1/3-1... 
<=>2/26+2/28+2/30+...+2/50=1-1/2+1/3-1... 
<=>1/13+1/14+1/15+...+1/25=1-1/2+1/3-1... 
<=>2/14+2/16+2/18+...2/24=1-1/2+1/3-1/... 
<=>1/7+1/8+1/9+...+1/12=1-1/2+1/3-1/4+... 
<=>2/8+2/10+2/12=1-1/2+1/3-1/4+1/5-1/6 
<=>1/4+1/5+1/6=1-1/2+1/3-1/4+1/5-1/6 
<=>2/4+2/6=1-1/2+1/3 
<=>1/2+1/3=1-1/2+1/3 
<=>2/2=1

 

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)

=>đpcm

9 tháng 10 2016

Ta có :1/26 + 1/27 + ... + 1/50 - (1-1/2+1/3-1/4+...+1/49-1/50) 
=1/26+1/27+...+1/50 + (1/26-1/27+....-1/49+1/50) + (-1/13+1/14-....+1/24-1/25)+(-1/7+1/8-..... + 1/12) + (1/6-1/5+1/4)+(1/2-1) 
=1/13+1/14+...+1/25+ (-1/13+1/14-....+1/24-1/25)+(-1/7+1/8-..... + 1/12) + (1/6-1/5+1/4)+(1/2-1) 
=1/7+1/8+...+1/12 + (-1/7+1/8-...-1/11 + 1/12) + (1/6-1/5+1/4)+(1/2-1) 
=1/4+1/5+1/6 +(1/6-1/5+1/4)+(1/2-1) 
=1/2+1/2-1 
=0 
Vậy 1/26 + 1/27 + 1/28 +.....+ 1/49 +1/50 = 1- 1/2 +1/3 - 1/4 +....+ 1/49 - 1/50

5 tháng 5 2017

gọi \(A=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)và \(B=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

Ta có : \(B=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

         \(B=\left(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

         \(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

         \(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)\)

        \(B=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}=A\)

24 tháng 4 2019

Ta có: \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}\) (đpcm)

*đpcm = điều phải chứng minh

14 tháng 5 2018

ta có : 

\(VP=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}-1-\frac{1}{2}-...-\frac{1}{25}\)

\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}=VT\)

14 tháng 5 2018

Ta có: ​​​1 - 1/2 + 1/3 - 1/4 + ... + 1/49 - 1/50

         = 1 + 1/2 + 1/3 + 1/4 + ... + 1/49 + 1/50 - 2×( 1/2 + 1/4 + ... + 1/50)

         = 1 + 1/2 + 1/3 + 1/4 + ... + 1/50 - (1 + 1/2 + 1/3 + ... + 1/25)

         = 1/26 + 1/27 + 1/28 + ... + 1/49 + 1/50