Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cô-si a2+b2>=2ab, ta đc:
x^2+y^2>=2.x.y=2xy
x^2+1>=2.x.1=2x
y^2+1>=2.y.1=2y
Cộng vế theo vế ba BĐT trên, ta đc: x^2+y^2+x^2+1+y^2+1>=2xy+2x+2y
(=) 2(x^2+y^2+1)>=2(xy+x+y)
(=)x^2+y^2+1>=xy+x+y.
Ta có : x^2 + y^2 +1 >= xy +x +y
<=> 2(x^2+y^2 +1) >=2 ( xy+x+y) (*nhân 2 vào cả 2 vế)
<=> 2x^2+2y^2+2 >= 2xy+2x+2y
<=> 2x^2+2y^2+2-2xy-2x-2y >= 0
<=> x^2-2xy+y^2+x^2-2x+1+y^2-2y+1 >=0
<=> (x-y)^2 + ( x-1)^2 +(y-1)^2 >= 0
+ Với x,y thì (x-y)^2 >= 0;(x-1)^2>=0;(y-1)^2>=0 nên ...(ghi lại dòng trên)
Vậy : x^2 +y^2+1 >= xy+x+y
có sai đề ko vậy. \(x^2+y^2< \left(x+y\right)^2\) mới đúng. \(\Rightarrow\)\(\frac{x^2+y^2}{2}< \frac{\left(x+y\right)^2}{2}\). làm sao ngược lại đc. xem lại đề hộ mk
\(x^2+y^2-xy\ge x+y-1\)
\(\Leftrightarrow2x^2+2y^2-2xy\ge2x+2y-2\)
\(\Leftrightarrow2x^2+2y^2-2xy-2x-2y+2\ge0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(x^2-2xy+y^2\right)\ge0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(x-y\right)^2\ge0\)
Bat ddang thuc cuoiđung,cac phep biendddooii tren la tuong dduong nen BĐT cuoi ddung =>đpcm
xay ra--ddang--thuc khi x=y=1
\(\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)=1+\frac{x}{y}+1+\frac{y}{x}=2+\frac{x}{y}+\frac{y}{x}\)
Áp dụng BĐT cô si ,ta có:
\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x\cdot y}{y\cdot x}}=2\)
Vậy ta được đpcm
ta có:
\(a+\frac{1}{a}-2=\left(\sqrt{a}\right)^2+\left(\frac{1}{\sqrt{a}}\right)^2-2\sqrt{a\cdot\frac{1}{a}}=\left(\sqrt{a}+\frac{1}{\sqrt{a}}\right)^2\ge0\Rightarrow a+\frac{1}{a}\ge2\)
Vì a và 1/a cùng dấu nên 2 căn (a*1/a) lớn hơn 0 nha
Chứng minh bất đẳng thức sau:\(\frac{x}{y}\) + \(\frac{y}{x}\)lớn hơn hoặc bằng 2( với x,y cùng dấu)
Vì x, y cùng dấu nên \(\hept{\begin{cases}\frac{x}{y}>0\\\frac{y}{x}>0\end{cases}}\)
Ta có:
\(\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{y}-2+\frac{y}{x}\right)+2=\left(\sqrt{\frac{x}{y}}-\sqrt{\frac{y}{x}}\right)^2+2\ge2\)
Dấu = xảy ra khi x = y # 0
Câu a)
Ta có a + b \(\ge\)1 => a \(\ge\) 1 - b
Nên a2 + b2 \(\ge\) (1 - b)2 + b2 = 2b2 - 2b + 1 = 2(b2 - 2b.1/2 + 1/4 + 1/2) = 2(b - 1/2)2 + 1 \(\ge\) 1
Câu b) Áp dụng BĐT Bunhiacopxki ta có
(x + y)2 = (1.x + 1.y)2 \(\le\) (12 + 12)(x2 + y2) = 2.1 = 2
Dấu "=" xảy ra <=> x = y
câu1 : cần sửa lại là A2 + B2 \(\ge\frac{1}{2}\)
Ta chứng minh được : (A+B)2 \(\le2.\left(A^2+B^2\right)\) (*)
<=> A2 + B2 + 2A.B \(\le\) 2. (A2 + B2)
<=> 0 \(\le\) A2 + B2 - 2.A.B <=> 0 \(\le\) (A-B)2 luôn đúng => (*) đúng
b) Áp sung câu a => (x+y)2 \(\le\)2.(x2 + y2) = 2 => đpcm
Đề sai rồi bạn ơi :
\(\frac{5^2+6^2}{2}< \frac{\left(5+6\right)^2}{2}\)
Bạn xem lại đề đi.....