Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=5^{27}+5^{28}-5^{26}\)
\(=5^{26}\left(5+5^2-1\right)=5^{24}\cdot725⋮725\)
b: \(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{117}\left(1+3+3^2\right)\)
\(=13\left(1+3^3+...+3^{117}\right)\)
\(=13\cdot\left[\left(1+3^3\right)+3^6\left(1+3^3\right)+...+3^{114}\left(1+3^3\right)\right]\)
\(=13\cdot28\cdot\left(1+3^6+...+3^{114}\right)⋮91\)
\(A=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)\)
\(=57\left(7+7^4+...+7^{118}\right)⋮57\)
\(A=7\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)\)
\(=57\left(7+...+7^{118}\right)⋮57\)
\(91=7.13\)
Đặt \(A=5^n\left(5^n+1\right)-6^n\left(3^{n+2}\right)\)
\(\Rightarrow A=\left(25^n-18^n\right)-\left(12^n-5^n\right)\)
Ta có:
\(\left\{\begin{matrix}25^n-18^n⋮25-18=7\\12^n-5^n⋮12-5=7\end{matrix}\right.\)\(\Leftrightarrow A⋮7\)
Mặt khác:
\(A=\left(25^n-12^n\right)-\left(18^n-5^n\right)\)
Lại có:
\(\left\{\begin{matrix}25^n-12^n⋮25-12=13\\18^n-5^n⋮18-5=13\end{matrix}\right.\)\(\Leftrightarrow A⋮13\)
Mà: \(\left(7;13\right)=1\)
\(\Leftrightarrow A⋮91\)
Vậy \(5^n\left(5^n+1\right)-6^n\left(3^{n+2}\right)⋮91\) (Đpcm)
+) Vì \(3⋮3\); \(3^2⋮3\); \(3^3⋮3\); \(3^4⋮3\); .............. ; \(3^{119}⋮3\); \(3^{120}⋮3\)
\(\Rightarrow3+3^2+3^3+3^4+.........+3^{119}+3^{120}⋮3\)
hay \(A⋮3\)
+) \(A=3+3^2+3^3+3^4+..........+3^{119}+3^{120}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+..........+\left(3^{119}+3^{120}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+.........+3^{119}\left(1+3\right)\)
\(=3.4+3^3.4+........+3^{119}.4=4.\left(3+3^3+.......+3^{119}\right)⋮4\)
+) \(A=3+3^2+3^3+3^4+...........+3^{119}+3^{120}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+........+\left(3^{118}+3^{119}+3^{120}\right)\)
\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+..........+3^{118}\left(1+3+3^2\right)\)
\(=3.13+3^4.13+.......+3^{118}.13=13.\left(3+3^4+........+3^{118}\right)⋮13\)
Vậy \(A⋮3,4,13\)
A = 3 + 32 + 33 + ... + 3120
= 3 (1 + 3 + 32 + ... + 3119)
Vì 3 chia hết cho 3 nên 3 (1 + 3 + 32 + ... + 3119) chia hết cho 3
=> A chia hết cho 3 (đpcm)
A = 3 + 32 + 33 + ... + 3120
= (3 + 32) + (33 + 34) + ... + (3119 + 3120)
= 3 (1 + 3) + 33 (1 + 3) + ... + 3119 (1 + 3)
= 3 . 4 + 33 . 4 + ... + 3119 . 4
Vì 4 chia hết cho 4 nên 3 . 4 + 33 . 4 + ... + 3119 . 4 chia hết cho 4
=> A chia hết cho 4 (đpcm)
A = 3 + 32 + 33 + ... + 3120
= (3 + 32 + 33) + (34 + 35 + 36) + ... + (3118 + 3119 + 3120)
= 3 (1 + 3 + 32) + 34 (1 + 3 + 32) + ... + 3118 (1 + 3 + 32)
= 3 . 13 + 34 . 13 + ... + 3118 . 13
Vì 13 chia hết cho 13 nên 3 . 13 + 34 . 13 + ... + 3118 . 13 chia hết cho 13
=> A chia hết cho 13 (đpcm)