K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(1^3+2^3+3^3+4^3+5^3+6^3+7^3+8^3+9^3+10^3\right)\)

\(=\left(1+2+3+...+10\right)^2\)

\(=\left(\dfrac{10\cdot11}{2}\right)^2=\left(5\cdot11\right)^2=25\cdot121⋮11\)

4 tháng 7

Ta sẽ chứng minh \(1^3+2^3+3^3+...+n^3=\left[\dfrac{n\left(n+1\right)}{2}\right]^2\) bằng quy nạp.   (*)

Thật vậy, với \(n=1\) thì (*) thành \(1^3=\left[\dfrac{1.2}{2}\right]^2\), luôn đúng

Giả sử (*) đúng đến \(n=k\ge1\), khi đó cần chứng minh (*) đúng với \(n=k+1\). Thật vậy, với \(n=k+1\) thì

\(VT=1^3+2^3+3^2+...+k^3+\left(k+1\right)^3\)

\(=\left[\dfrac{k\left(k+1\right)}{2}\right]^2+\left(k+1\right)^3\) (theo giả thiết quy nạp)

\(=\left(k+1\right)^2\left(\dfrac{k^2}{4}+k+1\right)\)

\(=\left(k+1\right)^2\left(\dfrac{k^2+4k+4}{4}\right)\)

\(=\dfrac{\left(k+1\right)^2\left(k+2\right)^2}{4}\)

\(=\left[\dfrac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)

Vậy (*) đúng với \(n=k+1\). Theo nguyên lí quy nạp, (*) được chứng minh.

Như vậy \(1^3+2^3+3^3+...+10^3=\left(\dfrac{10.11}{2}\right)^2=\left(5.11\right)^2=25.11^2⋮11\), ta có đpcm.

10 tháng 11 2018

Ta có

A   =   1 3 +   2 3   +   3 3   +   4 3   +   5 3   +   6 3   +   7 3   +   8 3   +   9 3   +   10 3                         =   ( 1 3   +   10 3 )   +   ( 2 3   +   9 3 )   +   ( 3 3   +   8 3 )   +   ( 4 3   +   7 3 )   +   ( 5 3   +   6 3 )                         =   11 ( 1 2   –   10   +   10 2 )   +   11 ( 2 2   –   2 . 9   +   9 2 )   +   …   +   11 ( 5 2   –   5 . 6   +   6 2 )

Vì mỗi số hạng trong tổng đều chia hết cho 11 nên A ⁝ 11.

Lại có

A   =   1 3 +   2 3   +   3 3   +   4 3   +   5 3   +   6 3   +   7 3   +   8 3   +   9 3   +   10 3 =   ( 1 3   +   9 3 )   +   ( 2 3   +   8 3 )   +   ( 3 3   +   7 3 )   +   ( 4 3   +   6 3 )   +   ( 5 3   +   10 3 ) =   10 ( 1 2   –   9   +   9 2 )   +   10 ( 2 2   –   2 . 8   +   8 2 )   +   …   +   5 3   +   10 3

Vì mỗi số hạng trong tổng đều chia hết cho 5 nên A ⁝ 5.

Vậy A chia hết cho cả 5 và 11

Đáp án cần chọn là: C

a) Ta có: \(85^2-15^2\)

\(=\left(85-15\right)\left(85+15\right)\)

\(=70\cdot100=7000\)

b) Ta có: \(93^3+21\cdot93^2+3\cdot49\cdot93+343\)

\(=93^3+3\cdot93^2\cdot7+3\cdot93+7^2+7^3\)

\(=\left(93+7\right)^3\)

\(=100^3=1000000\)

c) Ta có: \(73^2-13^2-10^2+20\cdot13\)

\(=73^2-\left(13^2+10^2-20\cdot13\right)\)

\(=73^2-\left(13^2-2\cdot13\cdot10+10^2\right)\)

\(=73^2-\left(13-10\right)^2\)

\(=73^2-3^2=\left(73-3\right)\left(73+3\right)\)

\(=70\cdot76=5320\)

16 tháng 8 2020

a) \(85^2-15^2=\left(85-15\right)\left(85+15\right)=70.100=7000\)

b) \(93^3+21.93^2+3.49.93+343\)

\(=93^3+3.7.93^2+3.7^2.93+7^3\)

\(=\left(93+7\right)^3\)

\(=100^3=1000000\)

c) \(73^2-13^2-10^2+20.13\)

\(=73^2-\left(13^2+10^2-20.13\right)\)

\(=73^2-\left(13-10\right)^2\)

\(=73^2-3^2\)

\(=\left(73+3\right)\left(73-3\right)\)

\(=76.70=5320\)

d) Viết = Latex hộ mình

30 tháng 7 2020

a) \(85^2-15^2=\left(85-15\right)\left(85+15\right)=70.100=7000\)

c) \(73^2-13^2-10^2+20.13\)

\(=73^2-\left(13^2+10^2-20.13\right)\)

\(=73^2-\left(13^2-2.13.10+10^2\right)\)

\(=73^2-\left(13-10\right)^2\)

\(=73^2-3^2\)

\(=\left(73-3\right)\left(73+3\right)\)

\(=70.76\)

\(=5320\)

d)Viết đề = công thức trực quan hộ mình

23 tháng 7 2021

a)\(69^2-31^2=\left(69-31\right)\left(69+31\right)=38.100=3800\)

23 tháng 7 2021

\(1023^2-23^2=\left(1023-23\right)\left(1023+23\right)=1000.1046=1046000\)

18 tháng 10 2015

Ta có: B = (1 + 100) + (2 + 99) + ...+ (50 + 51) = 101. 50

Để chứng minh A chia hết cho B ta chứng minh A chia hết cho 50 và 101

Ta có: A = (13 + 1003) + (23 + 993) + ... +(503 + 513) 

= (1 + 100)(12 + 100 + 1002) + (2 + 99)(22 + 2. 99 + 992) + ... + (50 + 51)(502 + 50. 51 + 512) =

101(12 + 100 + 1002 + 22 + 2. 99 + 992 + ... + 502 + 50. 51 + 512) chia hết cho 101 (1)

Lại có: A = (13 + 993) + (23 + 983) + ... + (503 + 1003)

Mỗi số hạng trong ngoặc đều chia hết cho 50 nên A chia hết cho 50 (2) 

Từ (1) và (2) suy ra A chia hết cho 101 và 50 nên A chi hết cho B

Ta có: B = (1 + 100) + (2 + 99) + ...+ (50 + 51) = 101. 50

Để chứng minh A chia hết cho B ta chứng minh A chia hết cho 50 và 101

Ta có: A = (13 + 1003) + (23 + 993) + ... +(503 + 513) 

= (1 + 100)(12 + 100 + 1002) + (2 + 99)(22 + 2. 99 + 992) + ... + (50 + 51)(502 + 50. 51 + 512) =

101(12 + 100 + 1002 + 22 + 2. 99 + 992 + ... + 502 + 50. 51 + 512) chia hết cho 101 (1)

Lại có: A = (13 + 993) + (23 + 983) + ... + (503 + 1003)

Mỗi số hạng trong ngoặc đều chia hết cho 50 nên A chia hết cho 50 (2) 

Từ (1) và (2) suy ra A chia hết cho 101 và 50 nên A chi hết cho B

6 tháng 1 2023

ta có :

`1^3` \(⋮\) `1`

\(2^3⋮2\)

\(3^3⋮3\)

.................

\(100^3⋮100\)

`=>` \(1^3+2^3+3^3+...+100^3⋮1+2+3+...+100\)

vậy `A` \(⋮\)`B`