Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+....+\frac{1}{17}\)
Ta có: \(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}< \frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}=\frac{6}{5}\left(1\right)\)
\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}< \frac{1}{11}+\frac{1}{11}+\frac{1}{11}+\frac{1}{11}+\frac{1}{11}+\frac{1}{11}+\frac{1}{11}=\frac{7}{11}\left(2\right)\)
Từ (1)(2) \(\Rightarrow A< \frac{6}{5}+\frac{7}{11}=\frac{66}{55}+\frac{35}{55}=\frac{101}{55}< \frac{110}{55}=2\)
\(\Rightarrow A< 2\Rightarrow\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{17}< 2\left(đpcm\right)\)
Ta có:
1/5=1/5
1/6<1/5
1/7<1/5
..........
1/10<1/5
=>1/5+1/6+...+1/10<1/5.6=6/5(1)
Lại có :
1/11=1/11
1/12<1/11
1/13<1/11
.............
1/17<1/11
=>1/11+1/12+1/13+...+1/17<1/11.7=7/11(2)
Từ (1)và (2)=>1/5+1/6+...+1/17<6/5+7/11=101/55<110/55=2
=>1/5+1/6+...+1/17<2
ĐPCM
\(C=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2008^2}\)
\(< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{2007.2008}\)
\(=\frac{5-4}{4.5}+\frac{6-5}{5.6}+\frac{7-6}{6.7}+...+\frac{2008-2007}{2007.2008}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2006}-\frac{1}{2007}\)
\(=\frac{1}{4}-\frac{1}{2007}< \frac{1}{4}\).
Gọi d là ƯC của 4n + 7 và 6n + 1
Khi đó : 4n + 7 chia hết cho d và 6n + 1 chia hết cho d
<=> 12n + 21 chia hết cho d và 12n + 2 chia hết cho d
=> (12n + 21) - ( 12n + 2) chia hết cho d = > 19 chia hết cho d
Vì 19 là số nguyên tố => d = 1
Vậy \(\frac{4n+7}{6n+1}\) Là p/s tối giản
Nếu n = 3 thì 4n+7/6n+1=1 đâu phải là phân số tối giản
Ta có\(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{10}\)<\(\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+...+\frac{1}{5}\)=\(\frac{5}{6}\)(6 c/s \(\frac{1}{5}\))
Ta lại có \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{17}\)<\(\frac{1}{11}+\frac{1}{11}+...+\frac{1}{11}\)=\(\frac{7}{11}\)(7 c/s \(\frac{1}{11}\))
Suy ra \(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{17}\)<\(\frac{110}{55}\)=2
Vậy...
Hok tốt
Đặt \(A=\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{17}\)
Ta có: \(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}< \frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}=\frac{6}{5}\)
\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}< \frac{1}{11}+\frac{1}{11}+\frac{1}{11}+\frac{1}{11}+\frac{1}{11}+\frac{1}{11}+\frac{1}{11}=\frac{7}{11}\)
\(\Rightarrow\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{17}< \frac{6}{5}+\frac{7}{11}\)
\(\Rightarrow A< \frac{101}{55}< \frac{110}{55}=2\)
\(\Rightarrow A< 2\)( ĐPCM )
2.Có A=1/5+1/6+1/7+...+1/17
=(1/5+1/6+1/7+...+1/10)+(1/11+1/12+1/13+..+1/17)
Tới đây bạn tự tìm xem nó có bao nhiêu phân số
A<1/5.6+1/11.7=6/5+7/11=101/55=\(1\frac{46}{55}\)<2
VẬy A<2
1.Có A = tự viết ra
=(1/5+1/6+..+1/10)+(1/11+1/12+..+1/17)
Có bao nhiêu nhiêu ps tự tìm nhớ
A>1/10 .6+1/17 .7=Tự làm các bước =86/85>1
Vậy A>1
4S = 4/(5x5) + 4/(9x9) + … + 1/(409x409)
Ta thấy:
4/(5x5) < 4/(3x7) = 1/3 – 1/7
4/(9x9) < 4/(7x11) = 1/7 – 1/11
…………
4/(409x409) < 4/(407x411) = 1/407 – 1/411
Mà :
4/(3x7) + 4/(7x11) + …. + 4/(407x411) = 1/3 – 1/411 = 136/411
4S < 136/411
S < 34/411 < 34/408 = 1/12
Hay S < 1/12
Đặt C
C có 13 phân số tất cả, ta chia ra như sau:
C =1/5+(1/6+....1/11)+(1/12+1/12+.....1/16 +1/17)
Vì trong nhóm I thì 1/ 6 là lớn nhất, nhóm II thì 1/12 là lớn nhất ,xuy ra:
C< 1/5 +6.1/6+6.1/12
C<1/5+ 1 +1/2
C<1+7/10<1+1=2
Vậy C<2
\(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{17}\)
\(=\left(\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{10}\right)+\left(\dfrac{1}{11}+...+\dfrac{1}{17}\right)< \dfrac{1}{5}.6+\dfrac{1}{11}.7\)
\(=\dfrac{6}{5}+\dfrac{7}{11}\)
\(=\dfrac{101}{55}< 2\left(đpcm\right)\)