Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-4xy+5y^2+2x-8y+5=\left(x-2y+1\right)^2+\left(y-2\right)^2\ge0\forall x,y\).
x2 - 4xy + 5y2 + 2x - 8y + 5
= x2 + 4y2 + 1 - 4xy + 2x - 4y + y2 - 2y + 1
= (x - 2y + 1)2 + (y - 1)2 ≥ 0
ta có:
X4 z4 y4 luôn>0
x-y>=\(\sqrt{2xy}\) >0
tương tự z-x, y-z =>A luôn dương
\(\left(x^2-y^2\right)^2=\left(x-y\right)^2\left(x+y\right)^2\) \(\Rightarrow\left\{{}\begin{matrix}x;y>0\\x+y< 1\end{matrix}\right.\)=> dccm sai = > người ra đề sai họăc người chép đề sai ;
bài 1 bạn có thể dùng đạo hàm giải sẽ dễ hơn, nhưng mà thì hk ngta k cho dùng nên ta giải cách cổ điểm nhé!
A = \(\frac{2x^2-4x+4+3}{x^2-2x+2}\)= \(2+\frac{3}{x^2-2x+1+1}\)= \(2+\frac{3}{\left(x-1\right)^2+1}\)
Ta có (x - 1)2 + 1 ≥ 1 (vì (x - 1)2 ≥ 0 )
nên \(\frac{1}{\left(x-1\right)^2+1}\)≤ 1 (nghịch đảo đổi chiều của bpt)
⇔ \(\frac{3}{\left(x-1\right)^2+1}\le3\)
Vậy Amax= 5 khi x = 1
bài 2) ta có x +y =2 ⇔ y = 2-x thế vào pt r giải ra
câu nàu mình chỉ cho bạn cần thôi, còn cá bắt đc hay không phụ thuộc vào bạn
Làm biến nghĩ nên làm cosi cho nó nhanh nhá:
Theo đề bài thì
\(3\sqrt[3]{xyz}\le x+y+z\le1\)
\(\Rightarrow xyz\le\dfrac{1}{27}\)
Ta có:
\(x+\dfrac{1}{y}=x+\dfrac{1}{9y}+\dfrac{1}{9y}+...+\dfrac{1}{9y}\ge10\sqrt[10]{\dfrac{x}{9^9y^9}}\left(1\right)\)
Tương tự ta có:
\(\left\{{}\begin{matrix}y+\dfrac{1}{z}\ge10\sqrt[10]{\dfrac{y}{9^9z^9}}\left(2\right)\\z+\dfrac{1}{x}\ge10\sqrt[10]{\dfrac{z}{9^9x^9}}\left(3\right)\end{matrix}\right.\)
Từ (1), (2), (3) ta có:
\(\Rightarrow\left(x+\dfrac{1}{y}\right)\left(y+\dfrac{1}{z}\right)\left(z+\dfrac{1}{x}\right)\ge1000\sqrt[10]{\dfrac{1}{9^{27}\left(xyz\right)^8}}=1000\sqrt[10]{\dfrac{27^8}{9^{27}}}=\dfrac{1000}{27}\)
\(A=\left[-3;-1\right]\cup\left[1;3\right]\)
Chắc B là { âm vô cùng;m) hợp [m+4;dương vô cùng) chứ nhỉ? Thế này nè:
\(B=\left(-\infty;m\right)\cup[m+4;+\infty)\)
Bạn ko ghi bằng kí tự nên chả biết sao mà lần.
Giả sử đề như trên đi thì \(A\subset B\) khi:
\(\left[{}\begin{matrix}m+4\le-3\\m>3\\\left\{{}\begin{matrix}m>-1\\m+4\le1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m\le-7\\m>3\end{matrix}\right.\)
\(1+y+z^2\le1+\frac{1+y^2}{2}+z^2\)
\(\frac{1+x^2}{1+y+z^2}\ge\frac{2\left(1+x^2\right)}{1+b^2+2\left(1+c^2\right)}\)
Bất đẳng thức cần chứng minh tương đương
\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge1\)
với \(a=1+x^2,b=1+y^2,c=1+z^2\)
\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge\frac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge1\)
Chứng minh hoàn tất. Đẳng thức xảy ra khi \(a=b=c=1\)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có ngay
\(\frac{1}{x}+\frac{1}{y}\ge\frac{\left(1+1\right)^2}{x+y}=\frac{4}{x+y}\). Đẳng thức xảy ra <=> x = y > 0
Vậy ta có điều phải chứng minh