K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2020

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có ngay 

\(\frac{1}{x}+\frac{1}{y}\ge\frac{\left(1+1\right)^2}{x+y}=\frac{4}{x+y}\). Đẳng thức xảy ra <=> x = y > 0

Vậy ta có điều phải chứng minh

14 tháng 1 2021

\(x^2-4xy+5y^2+2x-8y+5=\left(x-2y+1\right)^2+\left(y-2\right)^2\ge0\forall x,y\).

14 tháng 1 2021

x2 - 4xy + 5y2 + 2x - 8y + 5

= x2 + 4y2 + 1 - 4xy + 2x  - 4y + y2 - 2y + 1

= (x - 2y + 1)2 + (y - 1)≥ 0

15 tháng 8 2016

ta có:

X4 z4 y luôn>0

x-y>=\(\sqrt{2xy}\)  >0

tương tự z-x,  y-z  =>A luôn dương

 

16 tháng 8 2016

bạn cho mk hỏi cái dòng thứ 2 nghĩa là gì ?

 

16 tháng 8 2016

mũ 4 hay nhan 4 vay

 

 

4 tháng 3 2018

\(\left(x^2-y^2\right)^2=\left(x-y\right)^2\left(x+y\right)^2\) \(\Rightarrow\left\{{}\begin{matrix}x;y>0\\x+y< 1\end{matrix}\right.\)=> dccm sai = > người ra đề sai họăc người chép đề sai ;

30 tháng 4 2019

bài 1 bạn có thể dùng đạo hàm giải sẽ dễ hơn, nhưng mà thì hk ngta k cho dùng nên ta giải cách cổ điểm nhé!

A = \(\frac{2x^2-4x+4+3}{x^2-2x+2}\)= \(2+\frac{3}{x^2-2x+1+1}\)= \(2+\frac{3}{\left(x-1\right)^2+1}\)

Ta có (x - 1)2 + 1 ≥ 1 (vì (x - 1)2 ≥ 0 )

nên \(\frac{1}{\left(x-1\right)^2+1}\)≤ 1 (nghịch đảo đổi chiều của bpt)

\(\frac{3}{\left(x-1\right)^2+1}\le3\)

Vậy Amax= 5 khi x = 1

bài 2) ta có x +y =2 ⇔ y = 2-x thế vào pt r giải ra

câu nàu mình chỉ cho bạn cần thôi, còn cá bắt đc hay không phụ thuộc vào bạn

1 tháng 11 2017

ai giúp với

26 tháng 4 2017

Làm biến nghĩ nên làm cosi cho nó nhanh nhá:

Theo đề bài thì

\(3\sqrt[3]{xyz}\le x+y+z\le1\)

\(\Rightarrow xyz\le\dfrac{1}{27}\)

Ta có:

\(x+\dfrac{1}{y}=x+\dfrac{1}{9y}+\dfrac{1}{9y}+...+\dfrac{1}{9y}\ge10\sqrt[10]{\dfrac{x}{9^9y^9}}\left(1\right)\)

Tương tự ta có:

\(\left\{{}\begin{matrix}y+\dfrac{1}{z}\ge10\sqrt[10]{\dfrac{y}{9^9z^9}}\left(2\right)\\z+\dfrac{1}{x}\ge10\sqrt[10]{\dfrac{z}{9^9x^9}}\left(3\right)\end{matrix}\right.\)

Từ (1), (2), (3) ta có:

\(\Rightarrow\left(x+\dfrac{1}{y}\right)\left(y+\dfrac{1}{z}\right)\left(z+\dfrac{1}{x}\right)\ge1000\sqrt[10]{\dfrac{1}{9^{27}\left(xyz\right)^8}}=1000\sqrt[10]{\dfrac{27^8}{9^{27}}}=\dfrac{1000}{27}\)

25 tháng 9 2020

@Nguyễn Việt Lâm

NV
26 tháng 9 2020

\(A=\left[-3;-1\right]\cup\left[1;3\right]\)

Chắc B là { âm vô cùng;m) hợp [m+4;dương vô cùng) chứ nhỉ? Thế này nè:

\(B=\left(-\infty;m\right)\cup[m+4;+\infty)\)

Bạn ko ghi bằng kí tự nên chả biết sao mà lần.

Giả sử đề như trên đi thì \(A\subset B\) khi:

\(\left[{}\begin{matrix}m+4\le-3\\m>3\\\left\{{}\begin{matrix}m>-1\\m+4\le1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m\le-7\\m>3\end{matrix}\right.\)

15 tháng 10 2019

\(1+y+z^2\le1+\frac{1+y^2}{2}+z^2\)

\(\frac{1+x^2}{1+y+z^2}\ge\frac{2\left(1+x^2\right)}{1+b^2+2\left(1+c^2\right)}\)

Bất đẳng thức cần chứng minh tương đương

\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge1\)

với \(a=1+x^2,b=1+y^2,c=1+z^2\)

\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge\frac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge1\)

Chứng minh hoàn tất. Đẳng thức xảy ra khi \(a=b=c=1\)

17 tháng 10 2019

Lâu thiệt lâu mới thấy e ngoi lên á -)))