Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=5+5^2+5^3+5^4+...+5^{2022}\\ =\left(5+5^2+5^3+5^4+5^5+5^6\right)+....+5^{2016}\left(5+5^2+5^3+5^4+5^5+5^6\right)\\ =19530+....+5^{2016}.19530\\ =210.93+...+5^{2016}.210.93\\ =93.210.\left(1+...+5^{2016}\right)⋮93\left(ĐPCM\right)\)
Đặt A = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²²
= (2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶) + ... + (2²⁰²⁰ + 2²⁰²¹ + 2²⁰²²)
= 2.(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... + 2²⁰²⁰.(1 + 2 + 2²)
= 2.7 + 2⁴.7 + ... + 2²⁰²⁰.7
= 7.(2 + 2⁴ + ... + 2²⁰²⁰) ⋮ 7
Vậy A ⋮ 7
\(A=8\left(1+8\right)+8^3\left(1+8\right)+...+8^{2021}\left(1+8\right)\)
\(=8.9+8^3.9+...+8^{2021}.9=9\left(8+8^3+...+8^{2021}\right)⋮9\)
Em xem lại đề nhé! Có xuất hiện dấu + không? Hay chỉ là dấu x
\(B=2021\cdot1\cdot2\cdot3\cdot...\cdot2022\cdot\left(1+\dfrac{1}{2}+...+\dfrac{1}{2022}\right)⋮2021\)
Tham khảo
\(\text{+)}\)Ta có:\(5\equiv-1\left(mod3\right)\)
\(\Rightarrow5^{2022}\equiv\left(-1\right)^{2022}\left(mod3\right)\left(1\right)\)
\(\text{+)}\)Ta có:\(2\equiv-1\left(mod3\right)\)
\(\Rightarrow2^{2023}\equiv\left(-1\right)^{2023}\left(mod3\right)\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow5^{2022}+5^{2023}\equiv0\left(mod3\right)\)
Vậy...
25=32≡1(mod31)
⇒(25)400≡1( mod 31)
⇒22000≡1( mod 31)
⇒22000×22≡22( mod 31)
⇒22002≡4( mod 31)
⇒22002−4≡0( mod 31)
;-; nó ko hiện lên