Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-x^2-2x^2+2x\)
\(=x^2\left(x-1\right)-2x\left(x-1\right)\)
\(=\left(x^2-2x\right)\left(x-1\right)\)
\(=\left(x-1\right)\left(x-2\right)x\)
Vì đây là tích 3 số tự nhiên liên tiếp nên sẽ chia hết cho 6
B = (n^2 - 2n + 1)^3
= [(n-1)^2]^3
= (n-1)^6 ⋮ (n - 1)^2
đpcm
\(B=\left(n^2-2n+1\right)^3=\left[\left(n-1\right)^2\right]^3=\left(n-1\right)^6\)
\(B\div\left(n-1\right)^2=\left(n-1\right)^6\div\left(n-1\right)^2=\left(n-1\right)^4\)
=> Đpcm
a: \(a^3-a=a\left(a-1\right)\left(a+1\right)\)
Vì a;a-1;a+1 là ba số nguyên liên tiếp
nên \(a\left(a-1\right)\left(a+1\right)⋮3!\)
hay \(a^3-a⋮6\)
\(3^{15}+3^{16}+3^{17}\)
\(=3^{15}\left(1+3+9\right)\)
\(=3^{15}.13\)
\(\Rightarrow3^{15}\times13⋮3\)
Vậy \(3^{15}+3^{16}+3^{17}⋮3\)
a) \(\dfrac{10^{12}+5^{11}.2^9-5^{13}.2^8}{4.5^5.10^6}\)
\(=\dfrac{2^{12}.5^{12}+5^{11}.2^9-5^{13}.2^8}{2^2.5^5.2^6.5^6}\)
\(=\dfrac{2^{12}.5^{12}+5^{11}.2^9-5^{13}.2^8}{2^8.5^{11}}\)
\(=\dfrac{\left(2^8.5^{11}\right)\left(2^4.5+2-5^2\right)}{2^8.5^{11}}\)
\(=2^4.5+2-5^2\)
\(=57\)
b) \(\dfrac{\left[5\left(x-y\right)^4-3\left(x-y\right)^3+4\left(x-y\right)^2\right]}{\left(y-x\right)^2}\)
\(=\dfrac{\left(x-y\right)^2\left[5\left(x-y\right)^2-3\left(x-y\right)+4\right]}{\left(y-x\right)^2}\)
\(=\dfrac{\left(x^2+y^2-2xy\right)\left[5\left(x-y\right)^2-3\left(x-y\right)+4\right]}{\left(y^2+x^2-2xy\right)}\)
\(=5\left(x-y\right)^2-3\left(x-y\right)+4\)
c) \(\dfrac{\left(x+y\right)^5-2\left(x+y\right)^4+3\left(x+y\right)^3}{-5\left(x+y\right)^3}\)
\(=\dfrac{\left(x+y\right)^3\left[5\left(x+y\right)^2-2\left(x+y\right)+3\right]}{-5\left(x+y\right)^3}\)
\(=\dfrac{5\left(x+y\right)^2-2\left(x+y\right)+3}{-5}\)
Ta có :
\(3^{15}+3^{16}+3^{17}\)
\(=3^{15}\cdot\left(1+3+3^2\right)=3^{15}\cdot13⋮13\)
\(\rightarrow3^{15}+3^{16}+3^{17}⋮13\left(đpcm\right)\)
Ta có : \(3^{15}+3^{16}+3^{17}\)
\(=3^{15}\cdot\left(1+3+3^2\right)=3^{15}\cdot13⋮13\)
\(\Rightarrow3^{15}+3^{16}+3^{17}⋮13\)(đpcm)