Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
A= 52014-52013+52012⋮105
A= 5^2011(5^3- 5^2)+5
A=5^2011(125- 25)+5
A= 5^2011. 105
=> A:105(đpcm)
5^2014-5^2013+5^2012
=5^2012(5^2-5^1+1)
=5^2012.21 =5^2011.5.21
=5^2011.105
Vậy 5^2014-5^2013+5^2012 chia hết cho 105
chúc bạn học tốt
3^(3*15)+4.4^(2*51)
(27)^15+4.16^51
có 27 chia 13 dư 1
16 chia 13 dư 3 =>4.16^51 chia 3 dư 12
1+12=13 vậy chia hết cho 13
27 chia 11 dư 5
16 chia 11 dư 5
5+5*4=25 ko chia cho 11
Chứng minh: a,222^333+333^222 chia hết cho 13
b, 3^105+4^105 chai hết cho 13 nhưng ko chia hết cho 11
a)
Ta có: \(222^{333}=\left(222^3\right)^{111}\equiv1^{111}=1\left(mod13\right)\)
\(\Rightarrow222^{333}+333^{222}\equiv1+333^{222}=1+\left(333^2\right)^{111}\)
\(\equiv1+12^{111}\equiv1+12^{110}\cdot12\equiv1+\left(12^2\right)^{55}\cdot12\)
\(\equiv1+1\cdot12\equiv13\equiv0\left(mod13\right)\)
Vậy $222^{333}+333^{222}$ chia hết cho $13.$
b) Ta có:
\(3^{105}\equiv\left(3^3\right)^{35}\equiv1^{35}\equiv1\) (mod13)
\(\Rightarrow3^{105}+4^{105}\equiv1+4^{105}\equiv1+\left(4^3\right)^{35}\)
\(\equiv1+12^{35}\equiv1+\left(12^2\right)^{17}\cdot12\equiv1+1\cdot12\equiv13\equiv0\left(mod13\right)\)
Vậy $3^{105}+4^{105}$ chia hết cho $13.$
Lại có:
\(3^{105}\equiv\left(3^3\right)^{35}\equiv5^{35}\equiv\left(5^5\right)^7\equiv1\left(mod11\right)\)
\(4^{105}\equiv\left(4^3\right)^{35}\equiv9^{35}\equiv\left(9^5\right)^7\equiv1\left(mod11\right)\)
Từ đây:\(3^{105}+4^{105}\equiv1+1\equiv2\left(mod11\right)\)
Vậy $3^{105}+4^{105}$ không chia hết cho $11.$
P/s: Rất lâu rồi không giải, không chắc.
Chứng minh: a,222^333+333^222 chia hết cho 13
b, 3^105+4^105 chai hết cho 13 nhưng ko chia hết cho 11
3^105 + 4^105 = 27^35 + 64^35 chia hết cho 27+64=91
Mà 91 chia hết cho 13 nên 3^105 + 4^105 chia hết cho 13
91 ko chia hết cho 11 nên 3^105+4^105 ko chia hết cho 11
3^105+4^105=27^35+64^35 chia het cho 27+64=91
ma 91 chia het co 13 nên a chia het cho 13
sau tự lí luận nhà
\(A=5^{2014}-5^{2013}+5^{2012}=5^{2012}\left(5^2-5^1+5^0\right)=21.5^{2012}\\ \)
\(\hept{\begin{cases}105=21.5\\A=21.5^{2012}\end{cases}}\Rightarrow\frac{A}{105}=\frac{21.5^{2012}}{21.5}=5^{2011}\Rightarrow dpcm\)
5^2014-5^2013+5^2012=5^2012(5^2-5^1+1)
=5^2012.21
=5^2011.5.21
=5^2011.105
Vậy 5^2014-5^2013+5^2012 chia hết cho 105
Ta có:
\(A=5^{2014}-5^{2013}+5^{2012}\)
\(A=5^{2011}\left(5^3-5^2+5\right)\)
\(A=5^{2011}\left(125-25+5\right)\)
\(A=5^{2011}.105\)
\(\Rightarrow A⋮105\)
=> ĐPCM.