Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
Ta có:
\(1991\equiv 1\pmod {10}\Rightarrow 1991^{1997}\equiv 1^{1997}\equiv 1\pmod {10}(1)\)
\(1997\equiv 7\pmod {10}\Rightarrow 1997^{1996}\equiv 7^{1996}\pmod {10}(2)\)
Mà \(7^2\equiv -1\pmod {10}\Rightarrow 7^{1996}\equiv (-1)^{998}\equiv 1\pmod {10}(3)\)
Từ \((1);(2);(3)\Rightarrow 1991^{1997}-1997^{1996}\equiv 1-1\equiv 0\pmod {10}\) (đpcm)
b)
\(2^9+2^{99}=2^9(1+2^{90})\)
Ta thấy $2^{10}=1024\equiv -1\pmod {25}$
$\Rightarrow 2^{90}\equiv (-1)^9\equiv -1\pmod {25}$
$\Rightarrow 1+2^{90}\equiv 0\pmod {25}$ hay $1+2^{90}\vdots 25$
Mà $2^9\vdots 4$
Do đó:
$2^9+2^{99}=2^9(1+2^{90})\vdots 100$ (đpcm)
a) 25 - y2= 8.(x -2009)2
Do 8.(x-2009)2 không âm với mọi x nên 25 - y^2 không âm nên y^2 nhỏ hơn hoặc bằng 25
TH1: y = 0 thay vào phương trình thì x không thuộc Z (loại)
TH2: y = +-1 thay vào phương trình thì x không thuộc Z ( loại)
TH3: y = +-2 thay vào phương trình thì x không thuộc Z loại
chỉ thử đến y=+- 5 để thỏa mãn y2 nhỏ hơn hoặc bằng 25
Cuối cùng ta được y = +- 5 và x = 2009
b, x3.y=x.y3+1997x3.y=x.y3+1997
⇔x3.y−x.y3=1997⇔x3.y−x.y3=1997
Ta có: -1997 là số nguyên tố
-xy(x+y)(x-y) là hợp số
1/
a/ \(x^2+\left(y-10\right)^2=0\)
vì: \(\left\{{}\begin{matrix}x^2\ge0\forall x\\\left(y-10\right)^4\ge0\forall y\end{matrix}\right.\)
=> Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y-10=0\Rightarrow y=10\end{matrix}\right.\)
vậy......
b/ \(\left(0,5x-5\right)^{20}+\left(y^2-0,25\right)^{10}\le0\)
vì: \(\left\{{}\begin{matrix}\left(0,5x-5\right)^{20}\ge0\forall x\\\left(y^2-0,25\right)^2\ge0\forall y\end{matrix}\right.\)=> \(\left(0,5x-5\right)^{20}+\left(y^2-0,25\right)^{10}\ge0\)
=> Dấu ''='' xảy ra khi :
\(\left\{{}\begin{matrix}0,5x-5=0\\y^2-0,25=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{0,5}=10\\y^2=0,25\Rightarrow\left[{}\begin{matrix}y=0,5\\y=-0,5\end{matrix}\right.\end{matrix}\right.\)
Vậy........
2/ Ta có: \(2011\equiv1\left(mod10\right)\)
\(2011^{201}\equiv1^{201}\equiv1\left(mod10\right)\);
Có: \(1997^3\equiv3\left(mod10\right)\)
\(\left(1997^3\right)^4\equiv3^4\equiv1\left(mod10\right)\)
\(\left(1997^{12}\right)^{14}\equiv1^{14}\equiv1\left(mod10\right)\) hay \(1997^{168}\equiv1\left(mod10\right)\)
=> \(2011^{201}-1997^{168}\equiv1-1\equiv0\left(mod10\right)\)
hay \(2011^{201}-1997^{168}\) chia hết cho 10
=> Đpcm
A=999993^1999-555557^1997=\(\left(....3^{1996+3}\right)-\left(....7^{1996+1}\right)=\left(....3^{1996}\right)x27-\left(.....7\right)^{1996}\)x7=(....1)x27-(....1)x7
=(....7)-(.....7)=(...0) chia hết cho 5(sử dụng chữ số tận cùng và tính chất chia hết cho 5)
A =-1 -2 +3+4 -5 -6+7+8- 9- 10+11 +12-...- 1997- 1998 +1999+ 2000
= (-1-2+3+4) + (-5-6+7+8) + (-9-10+11+12) +....+ (-1997-1998+1999+2000)
= 4 + 4 + 4 +... +4 (Số bộ 4 số hạng: (2000 - 4):4 + 1= 500)
= 4 x 500
= 2000