Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)
\(=7^2-4.12=49-48=1\)
b(\(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)
\(=20^2+4.3=400+12=412\)
Cm: a, Ta có:
(a+b)2 = a2 + 2ab +b2 (1)
(a-b)2 + 4ab = a2 - 2ab +b2 + 4ab = a2 + 2ab +b2 ( 2)
Từ (1), (2) => đpcm
b. Ta có
(a-b)2 = a2 - 2ab +b2 (3)
(a+b)2 - 4ab = a2 + 2ab +b2 - 4ab = a2 - 2ab +b2 (4)
Từ (3),(4)=> đpcm
Áp dụng tính chất:
a, (a-b)2 = (a+b)2 - 4ab = 72 -4.12 = 1
b,(a+b)2 = (a-b)2 + 4ab = 202 + 4.3 = 412
Chúc bn hc tốt!
a - b = 2 . ( a + b )
a - b = 2a + 2b
a - 2a = 2b + b
-a = 3b
a = -3b
Ta có : 2 . ( a + b ) = 2 . ( -3b + b ) = 2 . ( -2b ) = -4b
từ đó suy ra : a = -4
\(\Rightarrow\)b = \(\frac{4}{3}\)
Có : (a-b)^2 >= 0
<=> a^2-2ab+b^2 >= 0
<=> a^2-2ab+b^2+2ab >= 0 + 2ab
<=> a^2+b^2 >= 2ab
Áp dụng bđt trên thì A >= \(2\sqrt{a.1}+2\sqrt{b.1}\) = \(2\sqrt{a}+2\sqrt{b}\)>= \(2\sqrt{2\sqrt{a}.2\sqrt{b}}\)
= \(2\sqrt{4.\sqrt{ab}}\)= \(2\sqrt{4.1}\)= 4
=> ĐPCM
Dấu "=" xảy ra <=> a=b=1
Tk mk nha
Đặt \(\frac{a}{b}=\frac{c}{d}=k\), suy ra \(a=bk;c=dk\)
\(VT=\frac{2b^2k^2-3b^2k+3b^2}{2b^2+3b^2k}=\frac{b^2\left(2k^2-3k+3\right)}{b^2\left(2+3k\right)}=\frac{2k^2-3k+3}{3k+2}\left(1\right)\)
\(VP=\frac{2d^2k^2-3d^2k+3d^2}{2d^2+3d^2k}=\frac{d^2\left(2k^2-3k+3\right)}{d^2\left(2+3k\right)}=\frac{2k^2-3k+3}{3k+2}\left(2\right)\)
Từ (1) và (2) suy ra ĐPcm
\(\left(a+b\right)^2=a^2+b^2+2ab=a^2+b^2-2ab+4ab=\left(a-b\right)^2-4ab\)
\(\left(a-b\right)^2=a^2+b^2-2ab=a^2+b^2+2ab-4ab=\left(a-b\right)^2-4ab\)
\(\left(a-b\right)^2=\left(a+b\right)^2-4ab\Rightarrow\left(a-b\right)^2=7^2-4\cdot12=49-48=1\)
\(\left(a+b\right)^2=\left(a-b\right)^2-4ab\Rightarrow\left(a+b\right)^2=20^2-4\cdot3=388\)