Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+3+3^2+..........+3^{11}\)
\(\Leftrightarrow A=\left(1+3\right)+\left(3^2+3^3\right)+.........+\left(3^{10}+3^{11}\right)\)
\(\Leftrightarrow A=1\left(1+3\right)+3^2\left(1+3\right)+.........+3^{10}\left(1+3\right)\)
\(\Leftrightarrow A=1.4+3^2.4+.......+3^{10}.4\)
\(\Leftrightarrow A=4\left(1+3^2+..........+3^{10}\right)⋮4\left(đpcm\right)\)
2n+13 chia hết cho 2n+5
=>[( 2n+13)-(2n+5)] chia hết cho 2n+5
=>8 chia hết cho 2n+5=>2n+5 la uoc của 8
U(8)={1;2;4;8}
còn lại bạn tự giải quyết nha
a) \(A=2\left(1+2+2^2+...+2^{59}\right)⋮2\)
b) \(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{59}\right)⋮3\)
c) \(A=2\left(1+2+2^2\right)+2^5\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^5+...+2^{58}\right)⋮7\)
a) A = 2 + 2² + 2³ + ... + 2⁵⁹ + 2⁶⁰
= 2.(1 + 2 + 2² + ... + 2⁵⁸ + 2⁵⁹) 2
Vậy A ⋮ 2
b) A = 2 + 2² + 2³ + ... + 2⁵⁹ + 2⁶⁰
= (2 + 2²) + (2³ + 2⁴) + ... + (2⁵⁹ + 2⁶⁰)
= 2.(1 + 2) + 2³.(1 + 2) + ... + 2⁵⁹.(1 + 2)
= 2.3 + 2³.3 + ... + 2⁵⁹.3
= 3.(2 + 2³ + ... + 2⁵⁹) ⋮ 3
Vậy A ⋮ 3
c) A = 2 + 2² + 2³ + 2⁴ + 2⁵ + 2⁶ + ... + 2⁵⁸ + 2⁵⁹ + 2⁶⁰
= (2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶) + ... + (2⁵⁸ + 2⁵⁹ + 2⁶⁰)
= 2.(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... + 2⁵⁸.(1 + 2 + 2²)
= 2.7 + 2⁴.7 + ... + 2⁵⁸.7
= 7.(2 + 2⁴ + ... + 2⁵⁸) ⋮ 7
Vậy A ⋮ 7
a)$10^{28}$1028 chia 9 dư 1
8 chia 9 dư 8
1 + 8 = 9 chia hết cho 9
$\Rightarrow$⇒$10^{28}+8$1028+8 chia hết cho 9 (1)
$10^{28}$1028 chia hết cho 8 (vì có 3 chữ số tận cùng là 000 chia hết cho 8)
8 chia hết cho 8
$\Rightarrow$⇒$10^{28}+8$1028+8 chia hết cho 8 (2)
Từ (1) và (2) kết hợp với ƯCLN (8,9) = 1 . Suy ra $10^{28}+8$1028+8 chia hết cho 72
b)$8^8+2^{20}=\left(2^3\right)^8+2^{20}=2^{24}+2^{20}=2^{20}\times\left(2^4+1\right)=2^{20}\times17$88+220=(23)8+220=224+220=220×(24+1)=220×17 chia hết cho 17
A = 3 + 32 + 33 + 34 + .... + 399 + 3100
= (3 + 32 + 33 + 34) + (35 + 36 + 37 + 38) + ..... + (397 + 398 + 399 + 3100)
= 3(1 + 3 + 32 + 33) + 35(1 + 3 + 32 + 33) + .... + 397(1 + 3 + 32 + 33)
= 40(3 + 35 + .... + 397) \(⋮5\)
Ta thấy A \(⋮3\)(vì các số hạng của A đều chia hết cho 3)
mà (3; 5) = 1
nên A \(⋮15\)
Ta có : A =3+3^2+3^3+3^4+.............+3^99+3^100
= (3+3^2+3^3+3^4)+................+(3^97+3^98+3^99+3^100)
= 3.(1+2+3+3^2)+ ...............+3^97.(1+2+3+3^2)
=3.15+.........................+3^97.15
=15.(3+...............+3^97) chia hết cho 15
ta có 155=31*5
=> ta cần c/m A chia hết cho 5 và 31
chứng minh A chia hết cho 5
nhóm A=(2^1+...+2^4)+(2^5+...+2^8)+...+(2^97+...+2^100)
=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+....+2^97(1+2+2^2+2^3)
=2*15+2^5*15+...+2^97*15
=15(2+2^5+...+2^97)=5*3*(2+2^5+...+2^97)=>A chia hết cho 5 (1)
c/m A chia hết cho 31
Nhóm A=(2^1+...+2^5)+(2^6+...+2^10)+...+(2^96+...+2^100)
=2(1+2^2+...+2^4)+2^6(1+2^2+...+2^4)+...+2^96(1+2^2+...+2^4)
=2*31+2^6*31+...+2^96*31=31(2+2^6+...+2^96)=> A chioa hết cho 31 (2)
Từ (1) và (2) suy ra A chia hết cho 155
cho mh nha!
A ko chia hết cho 155 nha bạ đề sai rồi