Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{1}{x^3+y^3}+\frac{1}{xy}\)
Ta có:
\(x+y=1\Rightarrow\left(x+y\right)^3=1\)
\(\Rightarrow x^3+y^3+3xy\left(x+y\right)=1\)
\(\Rightarrow x^3+y^3+3xy=1\)
\(\Rightarrow P=\frac{x^3+y^3+3xy}{x^3+y^3}+\frac{x^3+y^3+3xy}{xy}\)\(=4+\frac{3xy}{x^3+y^3}+\frac{x^3+y^3}{xy}\left(1\right)\)
Áp dụng Bđt Cô si ta có:
\(\frac{3xy}{x^3+y^3}+\frac{x^3+y^3}{xy}\ge2\sqrt{\frac{3xy}{x^3+y^3}\cdot\frac{x^3+y^3}{xy}}=2\sqrt{3}\)
\(\Rightarrow P\ge4+2\sqrt{3}\)(Đpcm)
Dấu = khi \(\hept{\begin{cases}x+y=1\\x^3+y^3=\sqrt{3xy}\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=1\\1-3xy=\sqrt{3xy}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=1\\3\sqrt{xy}=\frac{-1+\sqrt{5}}{2}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x+y=1\\xy=\frac{6-2\sqrt{5}}{12}\end{cases}}\)
\(\Leftrightarrow x^2-x+\frac{6-2\sqrt{5}}{12}=0\)\(\Leftrightarrow x,y=\frac{1\pm\sqrt{\frac{2\sqrt{5}-3}{3}}}{2}\)
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) ta có:
\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\)
\(\ge\frac{9}{x+y+y+z+x+z}=\frac{9}{2\left(x+y+z\right)}\)
Dấu "=" xảy ra khi \(x=y=z\)
Theo AM-GM , có :
\(x+y\ge2\sqrt{xy}\)
\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\)
Nhân vế theo vế :
\( \left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
\(\frac{x^2}{\sqrt{1-x^2}}=\frac{x^3}{\sqrt{x^2}.\sqrt{1-x^2}}\ge\frac{x^3}{\frac{x^2+1-x^2}{2}}=2x^3\)
Tương tự
\(\frac{y^2}{\sqrt{1-y^2}}\ge2y^3;\frac{z^2}{\sqrt{1-z^2}}\ge2z^3\)
Cộng vế theo vế
\(VT\ge2\left(x^3+y^3+z^3\right)=2\)
Dễ thấy:
\(VT\ge\left(x+y\right)^2+1-\dfrac{\left(x+y\right)^2}{4}=\dfrac{3\left(x+y\right)^2}{4}+1\)
Áp dụng Cô-si:
\(\dfrac{3\left(x+y\right)^2}{4}+1\ge2\sqrt{\dfrac{3\left(x+y\right)^2}{4}.1}=\sqrt{3}\left|x+y\right|\ge\sqrt{3}\left(x+y\right)\)
Do đó:
\(\left(x+y\right)^2+1-xy\ge\sqrt{3}\left(x+y\right),\forall x,y\in R\)
+) Áp dụng BĐT Cô - si cho 4 số dương x; x; y; z ta có:
x+x+y+z≥44√x.x.y.z
=> 2x + y + z ≥44√x.x.y.z (1)
Với 4 số dương 1x ;1x ;1y ;1z ta có: 1x +1x +1y +1z ≥4.4√1x .1x .1y .1z (2)
Từ (1)(2) => (2x+y+z)(1x +1x +1y +1z )≥4.4√x.x.y.z4.4√1x .1x .1y .1z =16
=> 12x+y+z ≤116 .(2x +1y +1z ) (*)
Tương tự, ta có: 1x+2y+z ≤116 .(1x +2y +1z ) (**)
1x+y+2z ≤116 .(1x +1y +2z ) (***)
Từ (*)(**)(***) => Vế trái ≤116 (4x +4y +4z )=14 .(1x +1y +1z )=14 .4=1
=> đpcm