Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(P=a^2+b^2+c^2+ab+bc+ca\)
\(P=\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{2}\left(a^2+b^2+c^2\right)\)
\(P\ge\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{6}\left(a+b+c\right)^2=6\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Áp dụng bất đẳng thức Cosi, ta có:
\(\left(a^2+b+c\right)\left(1+b+c\right)\ge\left(a+b+c\right)^2\)Do đó, để chứng minh bất đẳng thức đã cho, ta chỉ cần chứng minh rằng:
\(\frac{a\sqrt{1+b+c}+b\sqrt{1+c+a}+c\sqrt{1+a+b}}{a+b+c}\le\sqrt{3}\)
Áp dụng bất đẳng thức Côsi lần thứ hai ta nhận được:
\(VT=\frac{\sqrt{a}\sqrt{a\left(1+b+c\right)}+\sqrt{b}\sqrt{b\left(1+c+a\right)}+\sqrt{c}\sqrt{c\left(1+a+b\right)}}{a+b+c}\)
\(\le\frac{\sqrt{\left(a+b+c\right)\left[a\left(1+b+c\right)+b\left(1+c+a\right)+c\left(1+a+b\right)\right]}}{a+b+c}\)
\(=\sqrt{1+\frac{2\left(ab+bc+ca\right)}{a+b+c}}\)
\(\le\sqrt{1+\frac{2\left(a+b+c\right)}{3}}\)
\(\le\sqrt{1+\frac{2\sqrt{3\left(a^2+b^2+c^2\right)}}{3}}=\sqrt{3}\left(đpcm\right)\)
Đẳng thức xảy ra khi và chỉ khi a = b = c = 1.
Trước hết, với \(a+b+c=1\) ta có:
\(a^2+b^2+c^2=\left(a^2+b^2+c^2\right)\left(a+b+c\right)\)
\(=\left(a^3+ab^2\right)+\left(b^3+bc^2\right)+\left(c^3+ca^2\right)+a^2b+b^2c+c^2a\)
\(\ge2a^2b+2b^2c+2c^2a+a^2b+b^2c+c^2a\)
Hay \(a^2+b^2+c^2\ge3\left(a^2b+b^2c+c^2a\right)\)
Từ đó:
\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}=\dfrac{a^4}{a^2b}+\dfrac{b^4}{b^2c}+\dfrac{c^4}{c^2a}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\)
\(\ge\dfrac{3\left(a^2b+b^2c+c^2a\right)\left(a^2+b^2+c^2\right)}{a^2b+b^2c+c^2a}=3\left(a^2+b^2+c^2\right)\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
1: (a-1)(a-3)(a-4)(a-6)+9
=(a^2-7a+6)(a^2-7a+12)+9
=(a^2-7a)^2+18(a^2-7a)+81
=(a^2-7a+9)^2>=0
b: \(A=\dfrac{a^4-4a^3+a^2+4a^3-16a+4+16a-3}{a^2}=\dfrac{16a-3}{a^2}\)
a^2-4a+1=0
=>a=2+căn 3 hoặc a=2-căn 3
=>A=11-4căn 3 hoặc a=11+4căn 3
BĐT cần chứng minh tương đương:
\(a^2+b^2+c^2\ge2ab-2bc+2ca\)
\(\Leftrightarrow a^2+b^2+c^2+2bc-2a\left(b+c\right)\ge0\)
\(\Leftrightarrow a^2+\left(b+c\right)^2-2a\left(b+c\right)\ge0\)
\(\Leftrightarrow\left(a-b-c\right)^2\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng
áp dụng bdt svacxơ => VT >=(a+b+c)^2/(2a+2b+2c) = (a+b+c)/2 = VP (dpcm)
Xét hiểu hai vế: \(BĐT\Leftrightarrow\left(\frac{a^2}{b+c}-\frac{a}{2}\right)+\left(\frac{b^2}{c+a}-\frac{b}{2}\right)+\left(\frac{c^2}{a+b}-\frac{c}{2}\right)\ge0\)
\(\Leftrightarrow\frac{\left(a^2-ab\right)+\left(a^2-ac\right)}{2\left(b+c\right)}+\frac{\left(b^2-bc\right)+\left(b^2-ab\right)}{2\left(c+a\right)}+\frac{\left(c^2-ca\right)+\left(c^2-bc\right)}{2\left(a+b\right)}\ge0\)
\(\Leftrightarrow\frac{a\left(a-b\right)+a\left(a-c\right)}{2\left(b+c\right)}+\frac{b\left(b-c\right)+b\left(b-a\right)}{2\left(c+a\right)}+\frac{c\left(c-a\right)+c\left(c-b\right)}{2\left(a+b\right)}\ge0\)
\(\Leftrightarrow\Sigma_{cyc}\left(\frac{a\left(a-b\right)}{2\left(b+c\right)}-\frac{b\left(a-b\right)}{2\left(c+a\right)}\right)\ge0\)\(\Leftrightarrow\Sigma_{cyc}\frac{\left(a-b\right)}{2}\left(\frac{a}{b+c}-\frac{b}{c+a}\right)\ge0\)
\(\Leftrightarrow\Sigma_{cyc}\frac{\left(a-b\right)}{2}\left(\frac{a^2+ac-b^2-bc}{\left(b+c\right)\left(c+a\right)}\right)\ge0\)
\(\Leftrightarrow\Sigma_{cyc}\frac{\left(a-b\right)}{2}\left(\frac{\left(a-b\right)\left(a+b\right)+c\left(a-b\right)}{\left(b+c\right)\left(c+a\right)}\right)\)
\(\Leftrightarrow\Sigma_{cyc}\frac{\left(a+b+c\right)\left(a-b\right)^2}{2\left(b+c\right)\left(c+a\right)}\ge0\) (BĐT đúng)
\(\Rightarrow Q.E.D\)
Xảy ra đẳng thức khi a = b =c