Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4 :
Thay x=y+5 , ta có :
a ) ( y+5)*(y5+2)+y*(y-2)-2y*(y+5)+65
=(y+5)*(y+7)+y^2-2y-2y^2-10y+65
=y^2+7y+5y+35-y^2-2y-2y^2-10y+65
= 100
Bài 5 :
A = 15x-23y
B = 2x-3y
Ta có : A-B
= ( 15x -23y)-(2x-3y)
=15x-23y-2x-3y
=13x-26y
=13x*(x-2y) chia hết cho 13
=> Nếu A chia hết cho 13 thì B chia hết cho 13 và ngược lại
Phá ngoặc hết ra rồi phân tích thành tổng 3 bình phương.
Câu hỏi của nguyễn ngọc minh - Toán lớp 8 - Học toán với OnlineMath
Sửa đề thành vầy mới làm dc bạn\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)
\(\Rightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)\(=a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\)
\(\Rightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)
\(-a^2x^2-b^2y^2-c^2z^2-2axby-2bycz-2axcz=0\)
\(\Rightarrow a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2-2axby-2bycz-2axcz=0\)
\(\Rightarrow a^2y^2-2axby+b^2x^2+a^2z^2-2axcz+c^2x^2+b^2z^2-2bycz+c^2y^2=0\)
\(\Rightarrow\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)
\(\Rightarrow ay-bx=0,az-cx=0,bz-cy=0\)
\(\Rightarrow ay=bx,az=cx,bz=cy\)
\(\Rightarrow\frac{a}{x}=\frac{b}{y},\frac{a}{x}=\frac{c}{z},\frac{b}{y}=\frac{c}{z}\)
\(\Rightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\left(dpcm\right)\)
Chúc bạn học tốt . Chọn cho mình nha cảm ơn
nhan 2 ve voi a^2+b^2+c^2 dc toan binh phuong ,lon hon 0 nen x=y=z=0
CÁCH 1: Theo bất đẳng thức Bunhiacopski ta có:
\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\ge\left(ax+by+cz\right)^2\)
Dấu bằng xảy ra khi và chỉ khi \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
CÁCH 2: Nhân tung tóe cả 2 vế ra(đây cũng là cách CM bất đẳng thức bunhia cho bộ 3 số)
a.
Vơi mọi x, y ta luôn có:
\(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\) (1)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge x^2+y^2+2xy\)
\(\Leftrightarrow x^2+y^2\ge\dfrac{1}{2}\left(x+y\right)^2>\dfrac{1}{2}.1=\dfrac{1}{2}\) (đpcm)
b.
Sử dụng kết quả (1), ta có:
\(\dfrac{a}{b}+\dfrac{b}{a}=\dfrac{a^2+b^2}{ab}\ge\dfrac{2ab}{ab}=2\) (đpcm)
2đpcm bạn nhé
Chúc Bạn Học Tốt.