K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2018

A = ( x2 - 4x + 4 ) + ( y2 + 2y + 1 ) + 7 

   = ( x - 2 )2  + ( y + 1 )2 + 7 luôn dương nhé ( vì hai bình phương cộng thêm 7  lớn hơn 0 )

24 tháng 8 2018

\(A=x^2-4x+y^2+2y+12=x^2-4x+4+y^2+2y+1+7\)

   \(=\left(x-2\right)^2+\left(y+1\right)^2+7\ge7\)với mọi x,y

Do đó A luôn dương với mọi x,y

                            

2 tháng 7 2021

bạn cm các biểu thức trong căn > 0 ∀ x là xong =)) 

2 tháng 6 2018

\(P=xy\left(x-2\right)\left(y+6\right)+12x^2-24x+3y^2+18y+36\)

\(=\left(x^2-2x\right)\left(y^2+6y\right)+\left(12x^2+24x+12\right)+\left(3y^2+18y+9\right)+15\)

\(=\left[\left(x-1\right)^2-1\right]\left[\left(y+3\right)^2-9\right]+12\left(x-1\right)^2+3\left(y+3\right)^2+15\)

\(=3\left(x-1\right)^2+2\left(y+3\right)^2+15\)

Do đó \(P\ge15\)

\(\Rightarrow P>0\)

Suy ra P luôn dương

18 tháng 7 2016

21. Phân tích A thành \(A=\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(a^2+b^2+c^2+ab+bc+ac\right)\). Từ đó dễ dàng chứng minh.

18 tháng 7 2016

23. \(9y\left(y-x\right)=4x^2\Leftrightarrow9y^2-9xy=4x^2\Leftrightarrow4x^2+9xy-9y^2=0\)

Chia cả hai vế của đẳng thức trên với \(y^2>0\)được : 

\(4\left(\frac{x}{y}\right)^2+\frac{9x}{y}-9=0\). Đặt \(t=\frac{x}{y},t>0\)(Vì x,y dương)

\(\Rightarrow4^2+9t-9=0\Leftrightarrow\orbr{\begin{cases}t=\frac{3}{4}\left(\text{nhận}\right)\\t=-3\left(\text{loại}\right)\end{cases}}\)

Vậy \(\frac{x}{y}=\frac{3}{4}\Rightarrow y=\frac{4x}{3}\)thay vào biểu thức được :

\(\frac{x-y}{x+y}=\frac{x-\left(\frac{4x}{3}\right)}{x+\left(\frac{4x}{3}\right)}=-\frac{1}{7}\)

11 tháng 10 2021

1) ĐKXĐ: \(\left\{{}\begin{matrix}x^2+x+1\ge0\\x^2+1\ne0\end{matrix}\right.\)

Ta có:

+) \(x^2+x+1=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)

+) \(x^2+1\ge1>0\forall x\)

Vậy biểu thức luôn xác định với mọi x

2) ĐKXĐ: \(\left\{{}\begin{matrix}x^2-2x+3>0\\x^2-x+1\ge0\end{matrix}\right.\)

Ta có: 

+) \(x^2-2x+3=\left(x^2-2x+1\right)+2\)

\(=\left(x-1\right)^2+2\ge2>0\forall x\)

+) \(x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)

Vậy biểu thức luôn xác định với mọi x

17 tháng 10 2020

\(hcmuop\underrightarrow{jjjjjjjjj}me\)