Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(\Rightarrow2A=3^{128}-1\Rightarrow A=\dfrac{3^{128}-1}{2}\)
a: \(\left(a^2-b^2\right)^2+\left(2ab\right)^2\)
\(=a^4-2a^2b^2+b^4+4a^2b^2\)
\(=a^4+2a^2b^2+b^4=\left(a^2+b^2\right)^2\)
b: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)
\(=c^2\left(a^2+b^2\right)+d^2\left(a^2+b^2\right)\)
\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
c: \(\left(ax+b\right)^2+\left(a-bx\right)^2+c^2x^2\)
\(=a^2x^2+b^2+a^2+b^2x^2+c^2x^2\)
\(=a^2\left(x^2+1\right)+b^2\left(x^2+1\right)+c^2x^2\)
\(=\left(x^2+1\right)\left(a^2+b^2\right)+c^2x^2\)
a) \(A=\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(5x+5\right)^2\)
\(A=\left[\left(3x+1\right)-\left(5x+5\right)\right]^2\)
\(A=\left(-2x-4\right)^2\)
A = (3x + 1)2 - 2(3x + 1)(5x + 5) + (5x + 5)2
= [(3x + 1)-(5x + 5)]2
= (3x + 1 - 5x - 5)2
= [(-2x) - 4]2
B = (3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 +1)(332 + 1)
=> (3 - 1)B = (3 - 1)(3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 +1)(332 + 1)
=>2B = (32 - 1)(32 + 1)(34 + 1)(38 + 1)(316 +1)(332 + 1)
= (34 - 1)(34 + 1)(38 + 1)(316 +1)(332 + 1)
= (38 - 1)(38 + 1)(316 +1)(332 + 1)
= (316 - 1)316 +1)(332 + 1)
= (332 - 1)(332 + 1)
= 364 - 1
vì 2B = 364 - 1
=> B = \(\dfrac{3^{64}-1}{2}\)
C = a2 + b2 + c2 + 2ab - 2ac - 2bc + a2 + b2 + c2 - 2ab + 2ac - 2bc - 2( b2 - 2bc + c2)
= 2a2 + 2b2 + 2c2 - 4bc - 2b2 + 4bc - 2c2
= 2a2
a) Ta có: \(\left(a+b+c\right)^2+\left(b+c-a\right)^2+\left(a+c-b\right)^2+\left(a+b-c\right)^2\)
\(=a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2+2bc-2ab-2ac+a^2+b^2+c^2-2ab-2bc+2ac+a^2+b^2+c^2+2ab-2bc-2ca\)
\(=a^2+b^2+c^2+a^2+b^2+c^2+a^2+b^2+c^2+a^2+b^2+c^2\)
\(=4a^2+4b^2+4c^2\)
\(=4\left(a^2+b^2+c^2\right)\)
b) Đặt x = b + c - a
y = c + a - b
z = a + b - c
\(\Rightarrow\left\{{}\begin{matrix}c=\dfrac{x+y}{2}\\a=\dfrac{y+z}{2}\\b=\dfrac{x+z}{2}\end{matrix}\right.\)
\(\Rightarrow a+b+c=x+y+z\)
Ta có: \(\left(a+b+c\right)^3-x^3-y^3-z^3\)
\(=\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)
\(=\left(x+y\right)^3+3\left(x+y\right)z+3\left(x+y\right)z^2+z^3-x^3-y^3-z^2\)
\(=3x^2y+3xy^2+3\left(x+y\right)^2z+3\left(x+y\right)z^2\)
\(=3xy\left(x+y\right)+3\left(x+y\right)^2z+3\left(x+y\right)z^2\)
\(=3\left(x+y\right)\left[xy+\left(x+y\right)z+z^2\right]\)
\(=3\left(x+y\right)\left[z^2+xy+xz+yz\right]\)
\(=3\left(x+y\right)\left[z\left(x+y\right)+y\left(x+y\right)\right]\)
\(=3\left(x+y\right)\left(x+z\right)\left(y+z\right)\)
\(=3.2a.2b.2c\)
\(=24abc\) (đpcm)
a. \(\left(a+b+c\right)^2+\left(a-b-c\right)^2+\left(b-c-a\right)^2+\left(c-a-b\right)^2=a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2-2ab+2bc-2ac+c^2+a^2+b^2-2bc+2ac-2ab+a^2+b^2+c^2+2ab-2ac-2bc=4\left(a^2+b^2+c^2\right)\)b. Bạn làm tương tự câu a , đáp số ra : \(4\left(a^2+b^2+c^2+d^2\right)\)
a) \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2b-a^2c+c^2a-c^2b+b^2\left(c-a\right)\)
\(=\left(a^2b-c^2b\right)-\left(a^2c-c^2a\right)-b^2\left(a-c\right)\)
\(=b\left(a^2-c^2\right)-ac\left(a-c\right)-b^2\left(a-c\right)\)
\(=b\left(a-c\right)\left(a+c\right)-ac\left(a-c\right)-b^2\left(a-c\right)\)
\(=\left(a-c\right)\left[b\left(a+c\right)-ac-b^2\right]\)
\(=\left(a-c\right)\left(ab+bc-ac-b^2\right)\)
\(=\left(a-c\right)\left[\left(ab-b^2\right)+\left(bc-ac\right)\right]\)
\(=\left(a-c\right)\left[b\left(a-b\right)+c\left(b-a\right)\right]\)
\(=\left(a-c\right)\left[b\left(a-b\right)-c\left(a-b\right)\right]\)
\(=\left(a-c\right)\left(a-b\right)\left(b-c\right)\)
b) \(a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\)
\(=a^3b-a^3c+c^3a-c^3b+b^3\left(c-a\right)\)
\(=\left(a^3b-c^3b\right)-\left(a^3c-c^3a\right)-b^3\left(a-c\right)\)
\(=b\left(a^3-c^3\right)-ac\left(a^2-c^2\right)-b^3\left(a-c\right)\)
\(=b\left(a-c\right)\left(a^2+ac+c^2\right)-ac\left(a-c\right)\left(a+c\right)-b^3\left(a-c\right)\)
\(=\left(a-c\right)\left[b\left(a^2+ac+c^2\right)-ac\left(a+c\right)-b^3\right]\)
\(=\left(a-c\right)\left(ba^2+abc+bc^2-a^2c-ac^2-b^3\right)\)
\(=\left(a-c\right)\left[\left(ba^2-a^2c\right)+\left(abc-ac^2\right)+\left(bc^2-b^3\right)\right]\)
\(=\left(a-c\right)\left[a^2\left(b-c\right)+ac\left(b-c\right)+b\left(c^2-b^2\right)\right]\)
\(=\left(a-c\right)\left[a^2\left(b-c\right)+ac\left(b-c\right)-b\left(b^2-c^2\right)\right]\)
\(=\left(a-c\right)\left[a^2\left(b-c\right)+ac\left(b-c\right)-b\left(b-c\right)\left(b+c\right)\right]\)
\(=\left(a-c\right)\left(b-c\right)\left[a^2+ac-b\left(b+c\right)\right]\)
\(=\left(a-c\right)\left(b-c\right)\left(a^2+ac-b^2-bc\right)\)
\(=\left(a-c\right)\left(b-c\right)\left[\left(a-b\right)\left(a+b\right)+c\left(a-b\right)\right]\)
\(=\left(a-c\right)\left(b-c\right)\left(a-b\right)\left(a+b+c\right)\)