Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Giả sử \(\sqrt{2}\) là số hữu tỉ nên suy ra : \(\sqrt{2}=\frac{a}{b}\) ( a ; b \(\in\) N* ) ; ( a ; b ) = 1
\(\implies\) \(b\sqrt{2}=a\)
\(\implies\) \(b^2.2=a^2\)
\(\implies\) \(a\) chia hết cho \(2\) ; mà \(2\) là số nguyên tố
\(\implies\) \(a\) chia hết cho \(2\)
\(\implies\) \(a^2\) chia hết cho \(4\)
\(\implies\) \(b^2.2\) chia hết cho \(4\)
\(\implies\) \(b^2\) chia hết cho \(2\) ; mà \(2\) là số nguyên tố
\(\implies\) \(b\) chia hết cho \(2\)
\( \implies\) \(\left(a;b\right)=2\) mâu thuẫn với \(\left(a;b\right)=1\)
\( \implies\) Điều giả sai
\( \implies\) \(\sqrt{2}\) là số vô tỉ ( đpcm )
b) Giả sử \(5-\sqrt{2}\) là số hữu tỉ nên suy ra : \(5-\sqrt{2}=m\) ( m \(\in\) Q )
\( \implies\) \(\sqrt{2}=5-m\) ; mà \(5\) là số hữu tỉ ; \(m\) là số hữu tỉ nên suy ra : \(5-m\) là số hữu tỉ
Mà theo câu a ; \(\sqrt{2}\) là số vô tỉ
\( \implies\) Mâu thuẫn
\( \implies\) \(5-\sqrt{2}\) là số vô tỉ ( đpcm )
Ta có : \(\sqrt{2}\)là số vô tỉ
\(\sqrt{3}\)là số vô tỉ
\(\Rightarrow\sqrt{2}+\sqrt{3}\)là số vô tỉ ( đpcm )
b) tương tự :
\(\hept{\begin{cases}\sqrt{2}vôti\\\sqrt{3}vôti\\\sqrt{5}vôti\end{cases}}\)
\(\Rightarrow\sqrt{2}+\sqrt{3}+\sqrt{5}\)vô tỉ
a) Giả sử x + y là số hữu tỉ => x + y = a (a \(\in\) Q)
=> y = a - x, là số hữu tỉ, trái với đề bài
=> điều giả sử là sai
=> x + y là số vô tỉ (đpcm)
lm tương tự vs câu b
a) Có x thuộc Q; y thuộc I
Giả sử x + y = a thuộc Q
=> y = a - x thuộc Q (vì x thuộc Q)
Điều này trái với giả thiết y thuộc I
=> Điều giả sử là sai
=> x + y là số vô tỉ
Vậy x thuộc Q; y thuộc I thì x + y là số vô tỉ.
b) Có x thuộc Q; y thuộc I
Giả sử x - y = a thuộc Q
=> y = x - a thuộc Q (vì x thuộc Q)
Điều này trái với giả thiết y thuộc I
=> Điều giả sử là sai
=> x - y là số vô tỉ
Vậy x thuộc Q; y thuộc I thì x - y là số vô tỉ.