Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: p và p + 4 là hợp số
=> p là lẻ (thõa mãn)
=> p + 7 chẵn nên p + 7 là hợp số (đpcm)
p và p + 4 là hợp số
=> p lẻ (thõa mãn)
=> p + 7 chẵn nên p + 7 là hợp số (dpcm)
p + 14 > p
Mà p \(\ge2\)
Nếu p = 2 thì p+14 là hợp số [loại]
=> p > 2
=> p lẻ
=> p+7 chẵn
=> p+7 là hợp số
AI THẤY ĐÚNG NHỚ ỦNG HỘ NHÉ
Xét p dưới dạng : 3k (khi đó p =3) ,3k +1,3k +2 (k thuộc N). Dạng thứ ba không thỏa mãn đề bài (vì khi đó 8p -1 là hợp số), hai dạng trên đều cho 8p + 1 là hợp số
tk nha bạn
ta có : nếu P=3 suy ra :8P+1=25 chia hết cho 5
8P-1=23(số nguyên tố)
Vậy P=3 thỏa mãn yêu cầu của đề bải
nếu P >3 =>P;P+1:P-1 sẽ phải có 1 số chia hết cho 3 mà P là số nguyên tố lớn hơn 3=>P-1 hoắc P+1 chia hết cho 3=>(P-1)(P+1) chia hết cho 3
=>(8P-1)(8P+1) chia hết cho 3
=64p^2-1=63P^2+P^2-1=3.21P^2 chia hết cho 3
vậy 8p+1 là hớp số(chia hết cho 3)
Vì p là số ng tố lớn hơn 3
=> p = 3k + 1 hoặc p = 3k + 2 ( k \(\in\)N* )
*) Nếu: p = 3k + 1 => 5p + 1 = 5.( 3k + 1 ) + 1
= 15k + 5 + 1 = 15k + 6
Mà 15k + 6 \(⋮\)3
=> 5p + 1 là hợp số. ( trái với đề, loại )
Do đó: p chỉ có thẻ bằng 3k + 2
Khi đó: 7p + 1 = 7. ( 3k + 2 ) + 1
= 21k + 14 + 1 = 21k + 15
Mà 21k + 15 \(⋮\)3
=> 7p + 1 là hợp số ( điều phải chứng minh )
Vậy: 7p + 1 là hợp số.
Ta có:
Nếu \(p=2\Rightarrow8p-1=15\) là hợp số:
Nếu\(p=3\Rightarrow8p-1=23\)là số nguyên tố và\(8p+1=25\)là hợp số
Nếu \(p>3\Rightarrow p=3k+1;p=3k+2\left(k\in N\right)\)
Với: \(p=3k+1\left(k\in N\right)\Rightarrow8p+1=8\left(3k+1+1\right)=24k+9=3\left(8k+3\right)>3\)và \(⋮3\)nên \(8p+1\)là hợp số
Với: \(p=3k+2\left(k\in N\right)\Rightarrow8p-1=8\left(3k+2\right)-1=24k+15=3\left(8k+5\right)>3\)và \(⋮3\)nên \(8p-1\)là hợp số. ( vô lý )
Vậy \(8p+1\)là hợp số khi \(8p-1\)và \(p\)là các số nguyên tố
vì p+14 là số nguyên tố nên p+14 là số lẻ => p lẻ
mà lẻ + lẻ = chẵn nên p+ 7 là hợp số