Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(Q=C^1_n+2\dfrac{C_n^2}{C_n^1}+...+k\dfrac{C^k_n}{C_n^{k-1}}+...+n\dfrac{C^n_n}{C_n^{n-1}}\)
\(\Leftrightarrow Q=\dfrac{n!}{1!\left(n-1\right)!}+2\dfrac{1!\left(n-1\right)!}{2!\left(n-2\right)!}+...+k\dfrac{\left(k-1\right)!\left(n-k+1\right)!}{k!\left(n-k\right)!}+...+\dfrac{n\left(n-1\right)!1!}{n!}\)
\(\Leftrightarrow Q=n+\dfrac{2\left(n-1\right)}{2}+...+\dfrac{k\left(n-k+1\right)}{k}+...+\dfrac{n}{n}\)
\(\Leftrightarrow Q=n+\left(n-1\right)+...+\left(n-k+1\right)+...+1\)
\(\Leftrightarrow Q=n^2-\left(1+\left(1+1\right)+\left(1+2\right)+...+\left(n-1\right)\right)\)
\(lim\left(u_n\right)=lim\left(\frac{n}{n^2+1}\right)=lim\left(\frac{\frac{1}{n}}{1+\frac{1}{n^2}}\right)=\frac{0}{1}=0\)
b/
\(-1\le cos\frac{\pi}{n}\le1\Rightarrow-\frac{n}{n^2+1}\le v_n\le\frac{n}{n^2+1}\)
Mà \(lim\left(-\frac{n}{n^2+1}\right)=lim\left(\frac{n}{n^2+1}\right)=0\)
\(\Rightarrow lim\left(v_n\right)=0\)
\(C^n_n+C^{n-1}_n+C^{n-2}_n=37\)
\(\Leftrightarrow1+\dfrac{n!}{\left(n-1\right)!}+\dfrac{n!}{\left(n-2\right)!2!}=37\)
\(\Leftrightarrow1+n+\dfrac{n\left(n-1\right)}{2}=37\)
\(\Rightarrow n=8\)
\(P=\left(2+5x\right)\left(1-\dfrac{x}{2}\right)^8=\left(2+5x\right).\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{x}{2}\right)^k\right)\)
\(=\left(2+5x\right).\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^k\right)\)
\(=2.\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^k\right)+5x\)\(\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^k\right)\)
\(=2.\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^k\right)+5\)\(\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^{k+1}\right)\)
Số hạng chứa \(x^3\) trong \(2.\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^k\right)\) là \(2C^3_8.\left(-\dfrac{1}{2}\right)^3x^3\)
Số hạng chứa \(x^3\) trong \(5\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^{k+1}\right)\) là \(5C^2_8.\left(-\dfrac{1}{2}\right)^2x^3\)
Vậy số hạng chứa x3 trong P là:\(\left[2.C^3_8\left(-\dfrac{1}{2}\right)^3+5C^2_8\left(-\dfrac{1}{2}\right)^2\right]x^3\)
ta có : \(C^n_n+C^{n-1}_n+C^{n-2}_n=79\Leftrightarrow1+\dfrac{n!}{\left(n-1\right)!}+\dfrac{n!}{2\left(n-2\right)!}=79\)
\(\Leftrightarrow1+n+\dfrac{n\left(n-1\right)}{2}=79\Leftrightarrow n^2+n-39=0\) \(\Rightarrow∄n\in Z^+\)
\(\Rightarrow\) đề sai
\(u_2=u_1+d=-2+d\) ; \(v_2=v_1q=-2q\)
\(u_2=v_2\Rightarrow-2+d=-2q\Rightarrow d=2-2q\)
\(u_3=v_3+8\Leftrightarrow-2+2d=-2q^2+8\)
\(\Leftrightarrow-2+2\left(2-2q\right)=-2q^2+8\)
\(\Leftrightarrow2q^2-4q-6=0\Rightarrow\left[{}\begin{matrix}q=-1\Rightarrow d=4\\q=3\Rightarrow d=-4\end{matrix}\right.\)